
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Android Ransomware Detection

using Machine Learning

Techniques to Mitigate

Adversarial Evasion Attacks
by

Madiha Ameer
A thesis submitted in partial fulfillment for the

degree of Master of Science

in the

Faculty of Computing

Department of Computer Science

2019

www.cust.edu.pk
www.cust.edu.pk
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

i

Copyright c© 2019 by Madiha Ameer

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

ii

I dedicated my dissertation work to my parents and my teachers. A special

feelings of gratitude to my loving father and brother for their love, endless

support and encouragement.

CERTIFICATE OF APPROVAL

Android Ransomware Detection using Machine Learning

Techniques to Mitigate Adversarial Evasion Attacks

by

Madiha Ameer

(MCS173042)

EXAMINING COMMITTEE

S. No. Examiner Name Organization

(a) External Dr. Ayyaz Hussain IIUI, Islamabad

(b) Internal Dr. M. Shahid Iqbal Malik CUST, Islamabad

(c) Supervisor Dr. Muhammad Aleem CUST, Islamabad

Dr. Muhammad Aleem

Thesis Supervisor

November, 2019

Dr. Nayyer Masood Dr. Muhammad Abdul Qadir

Head Dean

Dept. of Computer Science Faculty of Computing

November, 2019 November, 2019

iv

Author’s Declaration

I, Madiha Ameer hereby state that my MS thesis titled “Android Ransomware

Detection using Machine Learning Techniques to Mitigate Adversarial

Evasion Attacks” is my own work and has not been submitted previously by

me for taking any degree from the Capital University of Science & Technology

Islamabad or anywhere else in the country/abroad.

At any time if my statement is found to be incorrect even after my graduation,

the University has the right to withdraw my MS Degree.

Madiha Ameer

(MCS173042)

v

Plagiarism Undertaking

I solemnly declare that research work presented in this thesis titled “Android

Ransomware Detection using Machine Learning Techniques to Mitigate Adversar-

ial Evasion Attacks” is solely my research work with no significant contribution

from any other person. Small contribution/help wherever taken has been dully

acknowledged and that complete thesis has been written by me.

I understand the zero tolerance policy of the HEC and the Capital university of

science & Technology Islamabad towards plagiarism. Therefore, I as an author of

the above titled thesis declare that no portion of my thesis has been plagiarized

and any material used as reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled

thesis even after award of MS Degree, the University reserves the right to with-

draw/revoke my MS Degree and that HEC and the University have the right to

publish out name on the HEC/University website on which names of students are

placed who submitted plagiarized work.

Madiha Ameer

(MCS173042)

vi

List of Publications

It is certified that following publication(s) have been made out of the research

work that has been carried out for this thesis:-

1. Ameer, M., Murtaza, S., & Aleem, M. (2018). A Study of Android-based

Ransomware: Discovery, Methods, and Impacts. , 13(3).,” Journal of Infor-

mation Assurance & Security, vol. 13(3), pp. 109-117, 2018.

Madiha Ameer

(MCS173042)

vii

Acknowledgements

All praise and exaltation to ALLAH (S.W.T) the Creator and sustainer of all

the seen and unseen word. First and foremost I would like to express my gratitude

and thanks to Him for providing me the boundaries and blessings to complete

this work. Secondly, I would like to express my sincerest appreciation to my su-

pervisor Dr. Muhammad Aleem for his directions, assistance, and guidance.

I sincerely thanked for his support, encouragement and technical advice in the

research area. I an heartily thankful to him from the final level, as he enabled me

to develop an understanding of the subject. He has taught me, both consciously

and unconsciously, how good experimental work is carried out, Sir, you will always

be remembered in my prayers. I am highly indebted to my parents and my fam-

ily, for their expectations, assistance, support and encouragement throughout the

completion of this Master of Science degree. They form the most important part

of my life. After ALLAH (S.W.T) they are the sole source of my being in this

world. No word can ever be sufficient for the gratitude I have for my father and for

my family. A special thanks to my brother for his support and encouragement to

complete this Master of Science degree. I pray to ALLAH (S.W.T) that may He

bestows me with true success in all fields in both worlds and shower His blessed

knowledge upon me for the betterment of all Muslims and whole Mankind.

Madiha Ameer

(MCS173042)

viii

Abstract

Ransomware is a specific kind of malware designed to extort money from some-

one by locking up their device and personal data files. The device owner is then

required to pay a ransom to possibly get the device unlocked and restore access

to the personal data files. From the last few couples of years due to excessive

use of Android cell phones and their technically advanced capabilities turn them

into information storage devices, which attract ransomware writers to attack these

devices for more financial benefits. Android ransomware is the most threatening

one among all other kinds of Android malware. Developments of new Android

malware make it difficult to differentiate between ransomware and other Android

malware. Therefore, it becomes mandatory to perform the behavioral analysis of

Android ransomware samples to recognize their malicious nature that differs from

other malware. Generally, there are two types of analysis mechanisms. First one

is the static analysis which is used to analyze the code structure and information

flow anomalies without executing the ransomware. Second is dynamic analysis,

the dynamic analysis examines run-time behavior by executing ransomware in

a controlled environment. Static analysis is unable to detect all possible attack

patterns whereas dynamic analysis provides additional protection and capable to

detect known and unknown ransomware. Therefore we proposed a hybrid approach

which is the combination of both static and dynamic analysis. We examine the

permissions, text, and network-based features statically and dynamically monitors

the memory usage, system call logs, and CPU usage in order to detect and classify

the Android ransomware from other malware using machine learning techniques.

We used a machine learning-based ensemble analysis approach to mitigate the ad-

versarial evasion attacks. These ensemble machine learning classifiers are trained

on the aforementioned static and dynamic features extracted from Android mal-

ware(ransomware and non-ransomware) applications. Our experimental results

depict that the proposed ensemble machine learning-based Android ransomware

classification and detection technique is capable to classify unknown ransomware

that exhibits the same static and dynamic behavior with 100% accuracy. More-

over, It is capable of mitigating adversarial evasion attacks.

Contents

Author’s Declaration iv

Plagiarism Undertaking v

List of Publications vi

Acknowledgements vii

Abstract viii

List of Figures xii

List of Tables xiv

Abbreviations xv

1 Introduction 1

1.1 Purpose . 6

1.2 Problem Statement . 6

1.3 Research Questions . 6

1.4 Proposed Solution . 7

1.5 Significance of The Solution . 8

1.6 Tools & Techniques . 8

2 Background and Literature Review 10

2.1 Android Ransomware . 10

2.1.1 Crypto-Ransomware & Locker-Ransomware 11

2.1.2 Families of Android Ransomware 11

2.1.3 Anatomy of Android Ransomware Attack 13

2.2 Literature Review . 14

2.2.1 Static Analysis . 14

2.2.2 Dynamic Analysis . 16

2.2.3 Hybrid Analysis . 17

2.2.4 Critical Analysis . 19

ix

x

3 Research Methodology 24

3.1 Proposed Hybrid Distinct Ensemble
Analysis . 24

3.1.1 Training of Hybrid Distinct Ensembles 28

3.1.2 Data Collection . 30

3.1.3 Extraction of Static Features 31

3.1.4 Extraction of Dynamic Features 34

3.1.5 Static Feature Vector . 40

3.1.6 Dynamic Feature Vector . 41

3.1.7 Feature Selection using InfoGain 42

3.1.8 Feature Selection using PCA 42

3.2 Classifiers used for Training . 43

3.2.1 Naive Bayes . 44

3.2.2 Decision Tree (J48) . 44

3.2.3 Random Tree . 44

3.2.4 Random Forest . 45

3.2.5 Support Vector Classifier . 45

3.2.6 Logistic Regression . 45

3.2.7 Adaptive Boosting (AdaBoosting) 46

3.2.8 Gradient Boosting . 46

3.2.9 Support Vector Machine with Sequential Minimal
Optimization . 47

3.2.10 JRip . 47

3.3 Evaluation Measurement . 47

4 Results and Discussion 49

4.1 Introduction . 49

4.2 Experimental Setup . 49

4.3 Dataset . 50

4.4 Feature Selection . 51

4.5 Classification . 55

4.6 Classification Results with Feature Selection 56

4.6.1 Classification Results of Top Ranked Features from InfoGain 56

4.6.2 Classification Results of Top Ranked Features from PCA . . 60

4.7 Classification Results without Feature
Selection . 64

4.8 Test Results of Hybrid Distinct Ensemble Analysis Approach Against
Fabricated
Inputs . 69

4.8.1 Results Against 1-bit Fabricated Input 69

4.8.2 Results Against 10-bit Fabricated Input 70

4.8.3 Results Against 20-bit Fabricated Input 72

5 Conclusion and Future Work 75

5.1 Conclusion . 75

xi

5.2 Future Work . 77

Bibliography 78

Appendix A 85

Appendix B 91

List of Figures

1.1 Screenshot of Android ransomware Attack. [15] 3

2.1 Anatomy of Android ransomware attacks. 13

2.2 Screen shot of Android ransomware payment. 14

3.1 Architecture of the proposed methodology 25

3.2 Training of ML based static ensemble analyzer 29

3.3 Training of ML based dynamic ensemble analyzer 29

3.4 Python Feature Extraction script working 31

3.5 .txt Files of features extracted by the script 32

3.6 Ten most used permissions by non-ransomware applications 32

3.7 Ten most used permissions by ransomware applications 33

3.8 Memory usage of application . 36

3.9 CPU usage during application execution 37

3.10 System calls log . 37

3.11 Dynamic features sheet . 40

4.1 Top-ranked static features by InfoGain method 51

4.2 Top-ranked dynamic features by InfoGain method 53

4.3 Evaluation results of ranked static data (InfoGain) Using a single
machine learning algorithm . 56

4.4 Evaluation results of ranked static data (InfoGain) using ensemble
learning . 57

4.5 Evaluation results of ranked dynamic data (InfoGain) Using a single
machine learning algorithm . 58

4.6 Evaluation results of ranked dynamic data (InfoGain) using ensem-
ble learning . 58

4.7 Evaluation results of ranked hybrid data (InfoGain) Using single
machine learning algorithm . 59

4.8 Evaluation results of ranked hybrid data (InfoGain) Using ensemble
learning . 60

4.9 Evaluation results of ranked static data (PCA) Using single machine
learning algorithm . 61

4.10 Evaluation results of ranked static data (PCA) Using ensemble
learning . 61

4.11 Evaluation results of ranked dynamic data (PCA) Using single ma-
chine learning algorithm . 62

xii

xiii

4.12 Evaluation results of ranked dynamic data (PCA) Using ensemble
learning . 62

4.13 Evaluation results of ranked hybrid data (PCA) Using single ma-
chine learning algorithm . 63

4.14 Evaluation results of ranked dynamic data (PCA) Using ensemble
learning . 64

4.15 Evaluation results of static data using single machine learning al-
gorithm . 65

4.16 Evaluation results of static data using ensemble learning 65

4.17 Evaluation results for dynamic data using single classifier 66

4.18 Evaluation results for dynamic data using ensemble learning 66

4.19 Evaluation results for Hybrid distinct data using single classifier . . 67

4.20 Evaluation results for Hybrid distinct data using ensemble Learning 67

4.21 Precision, Recall & F-Measure of Hybrid distinct ensemble analysis
approach Using one-bit fabricated data. 69

4.22 Accuracy of Hybrid distinct ensemble analysis approach using one-
bit fabricated data. 70

4.23 Precision, Recall & F-Measure of Hybrid distinct ensemble analyzer
Using 10-bit fabricated data . 71

4.24 Precision, Recall & F-Measure of Hybrid distinct ensemble analyzer
Using 10-bit fabricated data . 71

4.25 Precision, Recall & F-Measure Using 10-bit fabricated data 72

4.26 Accuracy of hybrid distinct ensemble against 20-bit fabricated data 73

List of Tables

2.1 Android ransomware inventing year and category 12

2.2 Critical analysis of literature review 19

3.1 Detail of Experimented Dataset . 30

3.2 List of collected dynamic features 38

4.1 System configuration . 50

4.2 Description of top ranked static features 52

4.3 Description of top ranked dynamic features 54

xiv

Abbreviations

ADB Android Debug Bridge

API Application Program Interface

APK Android Package Kit

AB AdaBoost

CPU Central Processing Unit

C&C Command and Control

FPR False Positive Rate

GB Gradient Boosting

IG Information Gain

IP Internet Protocol

LR Logistic Regression

NB Naive Bayes

NRW Non-ransomware

RW Ransomware

RF Random Forest

SMS Short Message Service

SMO Sequential Minimal Optimization

SVC Support Vector Classification

SVM Support Vector Machine

TPR True Positive Rate

URL Uniform Resource Locator

WEKA Waikato Environment for Knowledge Analysis

xv

Chapter 1

Introduction

Ransomware attacks have turned out to be a top security threat confronting in-

dividuals and corporations. It is a wicked kind of malware that differs from other

malware which may be simply annoying, delete or corrupt files, change system

configuration or try to capture information from passwords or keystrokes after-

word send it to control server. Whereas, the ransomware (RW) notify the victim

after infecting the system. Notification usually demands payment in an untrace-

able mode in order to restore the system to its prior state [1]. Ransomware comes

in different forms. Two general categories of ransomware are Crypto and Locker

ransomware [2]. Crypto ransomware finds and encrypts the files on the device us-

ing a strong cipher to make them inaccessible by the user. The locker ransomware

locks the device itself, mostly by locking user interface or using the pop-up overlay,

so that the user cannot even get into it [3]. Ransomware is not only a Windows

operating system’s phenomena it also attacks the Android devices. By the end of

2018 Android have over 86.8% of the total market share in mobile phones [4].With

the growing use of cell phones and Android being the most widely recognized op-

erating system for mobile devices [5], Android phones have become a popular and

profitable target for hackers because users mostly keep their personal and valu-

able data on these devices [1]. In September 2018, McAfee lab declared that the

aggregate of ransomware attacks had reached 17 million and Android ransomware

would be one of the more prominent security risks in the near future [6].

1

Introduction 2

Ransomware are distributed from the malicious server, google play store or third-

party app store. It may be distributed in the form of any legitimate application

or by using social engineering tactics that deceive the user to download malicious

content such as software updates, fake apps from third-party app stores [7] or by

clicking on the spam link sent by SMS [3]. However, modern Android ransomware

usually spread through compromised applications that are freely available to the

user through third party app stores. Generally, ransomware attackers select the

popular application to mimic or infect, to improve the probability that victim will

download their version. Depending upon the complexity of attack, the attackers

retaining the original functionality of the application may add malicious code to it,

or the application may only portray the icon and name of the original application.

This is done to silently install ransomware on the device without raising doubts of

user [8]. After successful installation, the ransomware gathers data of the victim’s

device, search for the targeted assets for example files, resources, etc. on the

other hand, it communicates with C&C server for obtaining the encryption key

if the key was not already included in its payload. After that ransomware hijack

(lock/encrypt) the targeted resources according to its type and display a message

to the victim asking for ransom payment along with the payment instructions [3].

Screenshot of Android ransomware is shown in Figure 1.1.

At present, ransomware particularly made for Android devices are on the rise [3].

Due to the alarming increase in Android ransomware applications, the analysis

and detection of Android ransomware have become an important research area.

Till date, a few Android ransomware detection and classification techniques have

been proposed [1, 5, 7, 9–13]. Ransomware detection techniques can be classified

into two categories: Static and Dynamic analysis. The Static analysis uses syntax

or structural properties of the application to determine its maliciousness [7]. Static

analysis relies on features extraction (without execution) generally from resources

files, Android Manifest files, Java Bytecode, etc. Android Manifest file contains

all required Permissions that are the central design point of the Android security

model [14]. By default, no application has permission to access sensitive data

(such as contacts, SMS) and certain system features (such as camera, internet,

Introduction 3

Figure 1.1: Screenshot of Android ransomware Attack. [15]

etc). Ransomware developers mostly exploit permissions for privilege escalation

and gain access to the sensitive data stored in the device.

The dynamic analysis aims to detect malicious behavior during program execu-

tion. Dynamic analysis can deal with the features such as dynamic code loading,

the sequence of system calls collected during application execution, network ac-

tivity, CPU usage, and memory usage [3]. Behavioral similarities of ransomware

applications can be helpful in detecting new ransomware applications.

State-of-the-art Android ransomware detection techniques [5, 10–13] usually do

not consider the structural features specific to the ransomware deportment [1] e.g.,

text inside the source code. Ransomware can contain some specific threatening

strings inside its code e.g., to lock, encrypt, porn, etc.

Another important feature that is ignored by many researchers [1, 5, 10–13] is

permissions. Most of the Android ransomware require particular permissions [14]

(such as BIND DEVICE ADMIN, KILL BACKGROUND PROCESS, and RE-

CEIVE BOOT COMPLETED, etc.,) which can be helpful for the detection of

Introduction 4

those ransomware [7]. Besides that, the Android ransomware regularly establish

connections to the network in order to fetch commands or send back the data

gathered from the device [8]. Hence, network addresses (email address, IP ad-

dress, URLs) might be present in the code of several ransomware samples, which

can be helpful in ransomware detection. These network-based features are never

been analyzed before statically for the detection of Android ransomware [1, 5, 7, 9–

13, 16].

Behavioral analysis using hardware features such as CPU usage, memory usage,

and system call logs could be helpful for classification [17] of Android ransomware,

since these are more resilient to modification as compared to the static features

[3] that ransomware can evade through code obfuscation and encryption, etc.,

[18]. However, in current behavior-based detection solutions [1, 7, 9, 11] there is

a lack of utilization of these features (such as System call logs, CPU and memory

usage). Furthermore, Detection and classification of Android ransomware is never

done before by employing a combination of all these aforementioned static and

dynamic features and machine learning approaches.

In recent decades, due to the advancements in machine learning techniques a

significant amount of research work done for Android malware detection utilize

machine learning techniques [13, 14, 19]. In spite of the fact that machine learning

techniques have manifested their adequacy in detection of malware programs [3],

machine learning classifiers are not much resilient to adversarial attacks due to the

property of machine learning theory that “In the learning phase data set used for

training remain representative of the problem domain assuming that no intention-

ally harmful modification of data happens” [20]. In machine learning, adversarial

attacks are the techniques that are employed to fool the machine learning model

through malicious inputs. Adversarial attacks in machine learning can be cate-

gorized into two types [21] (1) Evasion attacks (2) Poisoning attacks. In evasion

attacks, attackers intentionally fabricate the malicious input in such a way that

the classification model misclassifies it as benign [20]. While in poisoning attacks,

attackers poison the training data in order to compromise the whole learning pro-

cess.

Introduction 5

The focus of this study is to mitigate evasion attacks in Android ransomware

detection such as code obfuscation, its usage to evade malware/ransomware detec-

tion. Most of the existing ransomware techniques fail due to the change in input

feature vector for analysis (because if one aspect is used for obfuscation it changes

whole feature vector as result the trained classifier misclassify the ransomware).

Therefore, this research proposes an ensemble-based analysis mechanism to miti-

gate evasion attacks. With the aim that, if ransomware bypasses any of the base

classifiers in the ensemble, the other base classifiers can detect it and make the

correct classification. Moreover, the Android features that are considered here, are

not an easy target to be modified for evasion. On the basis of this motivation, we

propose a technique that combines the effectiveness of both static (Permissions,

Text, Network-based features) and dynamic features (system call logs, CPU and

memory usage) to detect extensive data set of Android ransomware using ensemble

machine learning model thus the ransomware cannot evade the detection.

The major contributions of this research work are as follows:

1. Extraction of network features and Text from code and permissions from

manifest file.

2. Extraction of CPU usage, memory usage, and system call logs by executing

the ransomware and malware (non-ransomware) application samples using

genymotion.

3. Trained two distinct ensemble machine learning models comprising of mul-

tiple machine learning algorithms for both static and dynamic feature sets

to detect Android ransomware applications.

4. Performed evaluation of the effectiveness of hybrid distinct ensemble analysis

approach to mitigate the adversarial evasion attacks on a large data set of

fabricated feature vectors of Android ransomware samples.

Introduction 6

1.1 Purpose

The purpose of this study is to explore Android features and provide a new way

to detect Android ransomware that can reduce adversarial evasion attacks. This

research work helps in providing a framework for effective Android ransomware

detection. This framework will be a stepping stone for Antivirus vendors and

malware experts to take these features and ensemble model into account to create

and improve new Android ransomware detection tools and anti-viruses.

We propose a hybrid distinct ensemble learning technique that uses various static

and dynamic features to mitigate evasion attacks and increase ransomware detec-

tion rate on android platform.

1.2 Problem Statement

There is a need to develop an approach that employs a combination of both effec-

tive static application features (such as permissions, text and networking features)

and dynamic features (such as CPU usage, memory usage, and system call logs)

to detect both crypto and locker Android ransomware and mitigate adversar-

ial evasion attacks. The classification of Android malware into ransomware and

non-ransomware is never done before using a combination of multiple static and

dynamic features such as permissions, network-based features (email addresses, IP

addresses, and URL), Text, system call logs and hardware features(CPU & mem-

ory usage). Moreover, machine learning based ensemble technique is not used

previously for the classification of Android ransomware.

1.3 Research Questions

The problems discussed above in Section 1.2 have led us to the following research

questions:

Introduction 7

1. How to classify Android malware into RW and NRW using both static and

dynamic features?

2. How to mitigate adversarial evasion attacks using ensemble machine learn-

ing?

3. How to detect zero-day ransomware?

4. Which features play a significant role in the detection of Android ransomware?

5. Which ensemble is more useful for the detection of Android ransomware?

1.4 Proposed Solution

To answer the aforementioned research questions, we propose an Android ran-

somware detection technique that integrates the robust features from both static

and dynamic approaches in order to detect the wide range of Android ransomware

from malware. Our proposed security mechanism analyze permission tags in the

manifest file, static text by parsing the dissembled code and network-based fea-

tures (such as URL, IP addresses and email addresses, etc.) are examined to check

whether the application will communicate to any malicious server after installa-

tion. CPU usage, memory usage, and system calls are observed during dynamic

testing to observe the run time behavior of the application, which is used to detect

zero-day attacks. This approach covers the static as well as the dynamic behav-

ior of applications by examining the combination of Permissions, Text, Network

addressed, System calls, CPU and memory usage features of Android application

that have not been used in this combination before. In order to mitigate the

adversarial evasion attacks, distinct ensemble analysis mechanism is used. For

both static and dynamic extracted feature sets an independent ensemble model

is trained. each ensemble model classifies application based on its input feature

vector and generates a label (RW/NRW). Classification results of both ensemble

Introduction 8

models are combined by a meta classifier and a final label for application is gen-

erated. The application will be classified as ransomware if any of the ensemble

analyzers assigns it RW label.

1.5 Significance of The Solution

Currently, the most extreme line of defense against ransomware is the antivirus

products that recognize attacks using signature-based techniques. However, An-

droid ransomware writers actively develop new techniques to evade current so-

lutions. Ransomware is the most malignant among all malware. Therefore it is

essential to develop a new security mechanism that is resistant and capable of

reducing evasion attacks. Considering this the proposed technique employs the

machine learning based ensemble analyzer that helps to mitigate the adversarial

evasion attacks. The proposed mechanism perceives vulnerabilities that help to

effectively classify and detect Android ransomware from other malware that are

non-ransomware and less harmful. It might help to expose more security indi-

cates that requires to be improved by antivirus solution providers. The proposed

technique provides deeper insight into the Android application features to pro-

vide a framework against Android ransomware attacks. The combination of these

features helps to form future prevention strategies for Android ransomware and

strengthen security solutions.

1.6 Tools & Techniques

Following tools and techniques are used in this research:

1. Operating System: Ubuntu (Version LTS 16.04) 64 bit, Windows 8 64bit.

2. Machine Learning Classifiers: Naive Bayes [22], Decision Tree, Random For-

est [23], Random Tree [24], Support Vector Classifier [25], Logistic Regression

Introduction 9

[26], Adaptive Boosting [27], Gradient Boosting [28], SVM with SMO [29],

Jrip [30].

3. WEKA Tool: For training and testing machine Learning classifiers [31].

4. APK Tool: To reverse engineer the .apk files [32].

5. Python script for static feature extraction: extract Permission request fea-

tures from AndroidManifest.xml, Network features and Text from code.

6. Python script for feature vectors.

7. Genymotion: to run Android virtual device [33].

8. Oracle VM Virtual Box: to setup virtual machine. Prerequisite for Geny-

motion.

9. Microsoft Excel 2013.

Chapter 2

Background and Literature

Review

2.1 Android Ransomware

Since the origination of Android operating system, its popularity has increased

and keeps on doing so. Overtime, attackers considered Android as a profitable

target and developed malware for Android. Various type of Android malware are

there that threatens the victim differently. Android malware are classified into

different categories according to their behavior and characteristics. Ransomware

is one of the subcategory of Android malware.

Android ransomware is the most challenging type of malware whose ultimate goal

is to achieve an economic benefit. Ransomware threaten victims to block access to

the device or data unless ransom is paid. It is commonly carried out using a Trojan

that tricks the user into thinking that it is a legitimate application. After running

the Trojan, it invokes the ransomware to encrypt the files stored on the device

for making them inaccessible to the user. At that point, it demands payment

normally through cryptocurrency to unlock the device. The victim cannot open

their files without paying the requested ransom, for the reason that private key

required for decryption of files is normally stored on C&C server [8, 16].

10

Background and Literature Review 11

2.1.1 Crypto-Ransomware & Locker-Ransomware

Generally, two types of Android ransomware are there [8]. First one is locker

ransomware that denies access to the mobile device using a locking mechanism or a

pop-up overlay on the user interface. Locker ransomware does not encrypt the data

files however the user cannot use the device. It is the most common type of Android

ransomware. The second type is crypto-ransomware that encrypts the stored files

and takes over the device. It is much more common in computers however it also

attacks the Android devices. Crypto ransomware demands ransom to decrypt the

encrypted files, and locker ransomware demand ransom for unlocking or allowing

access to the device [3, 14].

2.1.2 Families of Android Ransomware

Android ransomware started distributing in 2013. The first Android ransomware

appeared in mid-2013 in Russia, UK, India, Switzerland, and Germany. It was

locker ransomware and distributed through drive-by download [34]. 900,000 mo-

bile devices were infected in the first 30 days [35]. After that Android ransomware

continues to spread widely using different social engineering tactics and distribu-

tion methods such as fake app updates, third-party app stores, SMS Messages,

etc. The first crypto-ransomware “Simplocker” was seen in early 2014 in USA.

Simplocker encrypted the files having .jpg, .jpeg, .txt, .doc, .mp4, extensions and

asked victims to pay 200-500USD through Money pack voucher. By the end of

2016, it affected 150,000 Android users [36].

In 2015 another locker ransomware named “Lockerpin” was discovered that used

to gain administrative privileges and locks the device by setting a pin. According

to ESET’s LiveGrid, it infected android users mostly in the USA with a percent-

age share of 72% [37]. The rate of Android ransomware infection continues to

increase by the end of 2017. The number of new emerging Android ransomware

threats suggests that a large number of attackers are trying to jump in the ran-

somware trend by developing their own threats. Most widely recognized Android

Background and Literature Review 12

Table 2.1: Android ransomware inventing year and category

Name Year Category

Xbot 2015 Crypto− Locker

Svpeng 2013 Locker

Slocker 2016 Crypto− Locker

ScarePackage 2014 Locker

Simplocker 2014 Crypto

Reveton/Police Ransomware 2014 Locker

Koler 2014 Locker

Jisut 2014 Locker

Fusob 2016 Locker

LokiBot 2017 Crypto− Locker

Double Locker 2017 Crypto− Locker

AndroidDefender 2013 Locker

AndroidCharger 2017 Locker

AndroidFlocker 2015 Crypto− Locker

Leaker Locker 2017 Locker

FakeAvast 2013 Locker

LockerPin 2015 Locker

LockDroid 2014 Locker

Background and Literature Review 13

ransomware families along with their inventing year and category are listed in

Table 2.1 [8].

2.1.3 Anatomy of Android Ransomware Attack

Generally, all Android ransomware attacks take place in five phases: Deployment,

Installation, C&C server, Destruction and extortion as shown in Figure 2.1. In the

first phase, ransomware tries to get into the target device by means of different

methods such as drive-by download, phishing email, third-party app stores, and

fake app updates [8].

Figure 2.1: Anatomy of Android ransomware attacks.

After the malicious payload is delivered to the targeted device the ransomware

application tries to install itself and acquire administrative privileges. The device

gets affected, then it tries to communicate with its C&C server looking for in-

structions. Some ransomware variants report back a significant amount of device

information. In the case of crypto-ransomware, it communicates with the C&C

server and obtains the encryption key, if the encryption key is not added before in

its payload [14]. At this point, ransomware search for the particular type of files

and folders (such as jpg, .doc, .xlsx, .pdf, etc.) and starts encrypting those files

using a strong cipher. Android crypto-ransomware such as simplocker uses AES

encryption scheme in order to encrypt the data present in SD card and removes

all backup points [14]. Locker ransomware locks the device and extorts victim to

pay a ransom in the form of untraceable payment method such as Bitcoins, money

pack, Ukash cards, etc. by displaying non-detachable Ransom message, fake law,

and enforcement agencies messages or continuous pop-ups. As shown in the Figure

2.2

Background and Literature Review 14

Figure 2.2: Screen shot of Android ransomware payment.

2.2 Literature Review

Till date, various Android ransomware detection techniques have been developed.

The effectiveness and efficiency of a technique depend upon the analysis approach

used to mine the unique and distinctive features that correctly represents ran-

somware. The purpose of analysis is to extract those explanatory features that

denote maliciousness and helps in forming consequent detection strategies [13].

Analysis techniques are mainly classified into two types’ static analysis and dy-

namic analysis. While, hybrid analysis involves both static and dynamic analyses.

Both types of analyses have their own benefits and limitations. This chapter rep-

resents an extensive overview of the state-of-the-art research work done for the

detection of Android ransomware

2.2.1 Static Analysis

Static analysis is a system to inspect the functionality and malevolence of an

application by dissembling and exploring its source code without execution of

the application. Static analysis is useful for finding malicious behavior that may

Background and Literature Review 15

not operate until the specific conditions happen. For Android ransomware, static

analysis techniques have been used to extract various representative features that

help in identifying these malicious applications.

In [12], the authors described a model checking technique to identify malicious pay-

load in Android ransomware. This technique is organized into three sub-processes

(Formal Model Construction, Temporal Logic Properties construction and Ran-

somware family detection). In Formal Model Construction Byte code of the appli-

cation is parsed and suitable formal models of the system are produced, Temporal

Logic Properties construction defines the characteristics behavior of ransomware

that is written as a set of properties. Ransomware family detection invokes for-

mal verification environment including model checker to detect ransomware family.

Distinguishing features of this approach are the use of formal methods and recog-

nition of ransomware from Java Byte Code.

In [1], authors proposed HelDroid, an Android ransomware detection approach.

HelDroid proposed three generic indicators: Threatening Text Detector, Encryp-

tion Detector, and Locking Detector. These independent detectors are able to

be executed in parallel and each detector finds the specific indicator of compro-

mise. Threatening Text Detector recognizes threatening phrases in statically and

dynamically allocated strings. Encryption Detector checks whether the disassem-

bled code of the sample under analysis contains traces of unsolicited file-encryption

operations. Static taint-analysis track flows starting to the functions which con-

tact the storage and ending to the functions which compose encrypted content

and erase the first record. Locking Detector investigates if the application under

analysis is capable of locking the device. It utilizes a firm smali emulation to dis-

cover locking capabilities and recognize the occurrence of encryption by utilizing

taint analysis which is computation extensive. Their solution to for distinguish

encryption was restricted to the Android well-characterized API and a malware

author could easily evade the framework by using native code.

Background and Literature Review 16

2.2.2 Dynamic Analysis

Dynamic analysis examines the application during execution. It can absolutely

recognize the malicious behaviors which are not detected by static analysis tech-

nique. In dynamic analysis, the application is executed in a controlled environment

to observe the real behavior of the application and the way it interacts with the un-

derlying operating system. Dynamic analysis is more effective because it observes

the actual determination of the application and resilient to evasion. Moreover,

dynamic analysis can detect the unknown variants of ransomware families based

on their general behavior signatures.

In [9], authors proposed DNA-Droid which was basically an instant hybrid detec-

tion framework. This framework rapidly performed static analysis on application,

if it was labeled as suspicious, then the application was continuously monitored

and its run-time behavior was profiled. When the profile becomes analogous to a

group of malicious profiles, this framework terminates the program; otherwise, it

continues to monitor the application for another five minutes. Results described

that the DNA-Droid can effectively detect ransomware samples in the beginning

time of their malevolent activity. The structural design of their proposed frame-

work contains the three main components: static analysis component, the dynamic

analysis component, and a detection component. The static component includes

three sub-components (Text Classification Module (TCM), Image Classification

Module (ICM) and API calls and permissions Module (APM)) for evaluating mul-

tiple characteristics of an APK file. Dynamic Module uses to profile malware

families dependent on the API call sequences and creates a DNA for every fam-

ily. In the identification stage, the run-time behavior of a sceptical sample is

consistently contrasted to groups of DNA.

In [5], authors presented a ransomware prevention technique that diligently mon-

itors and specifies processes and particular file directories using processors and

memory usage, and I/O rate statistics so that the process with uncommon con-

duct can be distinguished. If a process is detected as doubtful then system stops

the process and deletes it contingent upon the user input. After confirmation

Background and Literature Review 17

by the user, the data of suspected and uncommon procedures was put away in

the database. On the bases of data gathered from recognized ransomware, later

on, damages caused by such ransomware could be prevented. The proposed tech-

nique was implemented using three components (Configuration, Monitoring, and

processing). Configuration component creates observing list table, Monitoring

component monitors memory, processor, and storage I/O usage of each process,

Processing component decide the handling of processes that are declared suspi-

cious by the monitoring component and makes an exemption or separation of the

procedure. The detection speed of this technique was fast because unlike other

techniques, rather than a mobile application it can be employed in Android source

code. Without getting data about the ransomware it can lessen harms brought

about by unknown ransomware.

In [11], the authors described RansomProber, a real-time detection technique for

crypto-ransomware. RansomProber dissects UI (User Interface) gadgets of related

actions and coordinates of the user’s finger movements and recognize whether

the record encryption activity is started by user or ransomware. RansomProber

comprises of three steps: Encryption analysis, Foreground analysis, and Layout

analysis. The encryption analysis component is used to identify whether some files

are encrypted. Foreground analysis component chooses whether the encryption

procedure has its place with the application that the user is associating with and

UI gadgets of related actions and task directions of the user are broke down in the

Layout analysis component. RansomProber can identify repackaging ransomware

that attacks an application without encryption. However, fails to detect in case

of repackaging with encryption or compression operations.

2.2.3 Hybrid Analysis

Although static analysis techniques are faster to Android ransomware detection,

these techniques come up short against code obfuscation and encrypted or packed

families (the families that use packers to compress their payloads). Likewise,

dynamic analysis can miss a portion of the code sections that are not executed, this

Background and Literature Review 18

makes dynamic analysis techniques vulnerable to evasion. Therefore employing

both static and dynamic analysis techniques can be more helpful for Android

ransomware detection.

In [10], authors introduced RanDroid, an automated approach that measures the

structural match between the set of gathered data from the assessed application

and the compromising data gathered from known ransomware variations to cate-

gorize the application as ransomware or a goodware. In static analysis RanDroid

extract app’s information such as images and text from XML layout files, re-

sources, and classes.dex files. Dynamic analysis captures the extortion activities

and examines the existence of threatening notes or locking screen. Image Similar-

ity Measurement (ISM) and String Similarity Measurement (SSM) are used to find

the similarity between extracted information and previously collected information

of known ransomware. Based on the similarity scores the inspected application is

considered as suspicious, good ware or ransomware.

In [13], authors proposed a hybrid approach for Android ransomware classification

& detection that first examine the application to be used on a device prior to

its installation by static analysis based on the frequency of opcode. After that

dynamic analysis recognizes if the system is under attack by monitoring usage

of CPU, memory, network, and system call statistics. Both static and dynamic

detection involves two phases: Preprocessing and Learning. In Static preprocessing

phase, numeric estimations of frequencies of opcode are acquired after that in

learning phase classifiers are trained using a labeled dataset that can detect and

classify ransomware application afterward. While in dynamic preprocessing phase

features are extracted from execution logs of applications. Furthermore, in learning

stage, classifiers are prepared to perceive execution records related with malevolent

conduct. Their results revealed that the hybrid method can detect ransomware

with 100% precision and have less than 4% false-positive rate.

In [38] authors presented a hybrid approach for classification and detection of ran-

somware from malware. At first they statically examined strings, PEview and

list of DLLs functions to classify the malware as ransomware or non-ransomware

Background and Literature Review 19

using machine learning classifiers. If the classifier classified it as non-ransomware

then further dynamic analysis is performed on it. In dynamic analysis they mon-

itored the file operations, API Calls, Registry keys and hardware performance

counters and used machine learning classifier to detect ransomware. Hardware

performance counters were helpful to detect and classify ransomware and non-

ransomware. Their technique was Applicable for Windows platform only. Their

used machine learning classifiers are vulnerable to adversarial evasion attack.

2.2.4 Critical Analysis

After a comprehensive study of state-of-the-art techniques of Android ransomware

detection, we summaries the strengths and weaknesses of the current approaches

in Table 2.2.

From the literature analysis it has been observed that despite the fact that Android

ransomware attacks are on the ascent, we have encountered a small number of

related works in literature that are addressing the issue of Android ransomware

detection. Most of the previously proposed techniques either perform only static

detection. [1, 10, 12] or dynamic detection [5, 11, 13].

Table 2.2: Critical analysis of literature review

Ref Methodology Strengths Weaknesses

[1]

The approach comprises

text classifier based on

NLP features.

The application of taint

tracking for detecting

file-encrypting flows.

A lightweight Smali

emulation technique to

detect locking strategies.

Exhibit both

generalization and

detection capabilit-

ies, being able to

efficiently detect

new variants and

families.

Only used

threatening text

detection.

Ignores the other

behavioral

detection features

such as System call

statistics, which

could be helpful for

detection.

Background and Literature Review 20

[9]

DNA Droid is a hybrid

approach.

The static approach is

based on text and image

classification as well as

on API calls and

application permissions.

The dynamic analysis

consists of sequences

of API calls.

DNA-Droid inst-

ant detection

module demonst-

rated high capab-

ility of detecting

ransomware

activity in beginn-

ings before the

infection occurs.

Dynamic detection

is only applied on

applications marked

suspicious by the

static detection.

In dynamic

detection, only

sequence of API

calls is used.

[10]

RanDroid measures the

structural similarity

between collected

images and texts of

application and predefines

threatening one collected

from known

ransomware.

Can extract

threatening

messages

from variants

that use evasion

techniques.

Misclassify the

samples due to

mismatch of images

with different

resolution, misspelled

and different font

styles of extracted

text. Samples with

foreign language

text also cannot

be classified by it.

[5]

This technique

dynamically monitors

read and write accesses

to the file systems.

It can detect and stop

ransomware having

abnormal CPU and

I/O usage.

It can detect

altered and new

patterns of

ransomware

without attaining

information

about particular

ransomware

families.

It cannot detect

ransomware with

threatening text and

locking ability.

Static detection is

not performed

which can be more

efficient.

Background and Literature Review 21

[38]

Statically examined

strings, PEview and

list of DLLs functions.

Dynamically monitors file

operations, API Calls,

Registry keys and

hardware performance

counters.

Hardware

performance

counters are

helpful to

detect and classify

RW from NRW.

Applicable for

Windows platform

only.

vulnerable to

adversarial

evasion attack.

[12]

Use model checking

approach to detect

Android ransomware.

Analyze Java Byte

Code to construct Formal

models and develop logic

rules to detect ransom-

ware families.

Recognition of

ransomware family

without

decompilation.

Independence from

obfuscation.

Ease of parsing

low-level code.

Dynamic behaviors

of applications are

not examined.

[11]

Perform Encryption

analysis to detect file

encrypted.

Foreground analysis

checks whether the

encryption process is

consistent with fore-

ground application.

Layout analysis analyze

UI Widgets of related

activities and operation

coordinates of the user.

RansomProber can

detect encrypting

ransomware

in real-time.

Abnormal

encryption

operations can be

detected before

ransomware

causes irretrievable

damages.

Detect only

crypto-ransomware.

Sophisticated code

obfuscation

techniques bypass

the RansomProber.

Background and Literature Review 22

[13]

Employ a hybrid

approach for Android

ransomware

detection.

Static analysis uses the

frequency of opcode.

Dynamic analysis

monitors CPU usage,

memory usage, network

usage, and system

call statistics.

Sequences of

opcodes and

system call

statistics can

effectively

detect Android

malware.

Dataset of Android

ransomware was

small, which may

not support different

families of Android

ransomware.

The used Machine

learning model can

be vulnerable to

adversarial

evasion attack.

Even though static analysis is quick, secure and precise in recognizing known

ransomware [3] but exclusively employing static detection could be vulnerable

to ransomware attacks with code obfuscation to change their structure [12] and

unable to deal with samples that encrypt or compress their payloads. While

dynamic analysis is resilient to evasion [13] and can detect unknown ransomware

based on the general behavioral signatures [5]. Besides that, the dynamic analysis

also has some flaws such as some actions only triggers under specific conditions

which may not be present in a testing environment such as emulator [3]. Therefore,

utilizing behavioral detection features that are resilient to the evasion [5, 13] in

combination with the effective static analysis features [5] could be worthwhile for

Android ransomware detection.

Few other techniques [11] that employed hybrid approach are either type specific

that deals with only one type such as crypto-ransomware [11] or only tackle a spe-

cific ransomware family. Family specific detection lacks the ability of generalizing

the solution for applying it to any type of ransomware. Furthermore, previously

proposed Android ransomware detection approaches [9, 13] that employed machine

learning techniques can be vulnerable to adversarial evasion attacks. The whole

Background and Literature Review 23

detection model can be compromised by the attackers merely applying code obfus-

cation or other evasion techniques on one aspect because tempering in one aspect

can change the whole feature vector as result ransomware can remain undetected

by the employed single machine learning classifier.

Chapter 3

Research Methodology

This chapter covers the methodology of our proposed research work. We discuss

the details of data set, extraction of both static and dynamic analysis features

and training of machine learning classifiers. We have performed our experimental

analysis by using hybrid distinct ensemble analyzers to enhance the performance of

learning and mitigate the evasion attacks. Section 3.1 explains the hybrid distinct

ensemble analysis followed by the training phase of ensemble analyzers in Section

3.1.1, data set description in Section 3.1.2, extraction of static features in Section

3.1.3, extraction of dynamic features in Section 3.1.4.

3.1 Proposed Hybrid Distinct Ensemble

Analysis

The general approach used for the proposed hybrid analyzer is the hybrid distinct

ensemble analyzers. Ensemble learning uses several classification algorithms to

acquire effective performance than could be achieved from any of the constituent

classifiers alone. The concluding prediction is made as to the label which is pre-

dicted by the majority of classifier [39]. The proposed hybrid distinct ensemble

analysis consists of two separate machine learning based ensembles, trained on

static and dynamic feature vectors separately. Each ensemble model consists of

24

Research Methodology 25

Figure 3.1: Architecture of the proposed methodology

Research Methodology 26

an odd number of machine learning classification algorithms such as three or five.

Stacking ensemble method is applied for training and testing of these classification

algorithms, where each algorithm is trained on the entire feature vector. The

classification results of classifiers are combined and then the final label is predicted

[40]. Application labeled as RW by any one of the ensemble models is considered

as ransomware. We call it hybrid distinct ensemble analyzer due to the separate

ensemble machine learning models used for static and dynamic analyses data sets

as explained in Figure 3.1. Both static and dynamic analysis are performed in

parallel for all the applications.

The proposed hybrid Android ransomware classification and detection approach

based on the ensemble learning is depicted in the Figure 3.1. We started with

the set of malware APK files consisting of both Android ransomware and non-

ransomware as input. Each Android application is packaged into .apk file which is,

in fact, a compressed file comprising of several files and folders such as classes.dex

files, assets, resources, META-INF and AndroidManifest.xml files, etc. classes.dex

files contain source code of application functionality. Assets folder comprises of

non-compiled resources and its directory structure is retained. Resource files hold

information related to the graphical or audio components (such as images, clips,

etc.). For authentication and verification of the application, its digital signature

and developer’s certificate are stored in the META-INF folder. AndroidMani-

fest.xml file particularly holds metadata of an application, for example package

name, desired permissions, and definition of different components such as broad-

cast receivers, services, activities, and minimum/maximum platform supported

libraries to be connected against and so on.

In first phase, features of static and dynamic analysis are extracted from the APK

file. Static and dynamic analyses are initiated at the same time. For static fea-

tures extraction, the APK file is dissembled into java and XML files and for this

purpose, we used Apk tool [32]. Apk tool is a freely available open source utility

that decompose an APK file into its integrant resources [41]. The received Java

and XML files are further scanned to extract features. Android has a particular

Research Methodology 27

permission strategy; permissions are allowed by the user upon application instal-

lation [9]. These permissions are extracted from AndroidManifest.xml files. While

text and network based features such as email addresses, IP addresses, and URL

from java files. These network features describe to whom the application com-

municate after installation. Since activities of Android ransomware are mostly

network-based [8] therefore these network features helps in detection of Android

ransomware applications. The Figure 3.1 shows these static features extraction

process.

In the second phase, these features are converted into a combine feature vector and

supplies to the proposed static ensemble learning model. Static ensemble machine

learning model is trained on these feature vectors. Once this static ensemble is

trained it can classify the application and assigns a label RW/NRW based on the

identical static features.

Likewise, for dynamic analysis, each APK file is executed in an emulation envi-

ronment to record its dynamic features. The extracted dynamic features of an

APK file are converted into a feature vector. These feature vectors are further

used to train dynamic ensemble model. Afterword the dynamic ensemble clas-

sifies the application and assign label RW/NRW. The final decision is made on

the classification results of both static and dynamic ensembles in such a way that

if anyone of these two ensembles classifies application as ransomware by assign-

ing it RW label. Then it will be classified as ransomware. The application is

classified as non-ransomware only if both static and dynamic ensembles assign it

the similar NRW label. Malware applications classified as ransomware are added

to the Android ransomware data set while the all other applications declared as

non-ransomware are added to the Non-ransomware data set.

Algorithm 1 describes the features extraction process of both static and dynamic

analysis from APK files, the conversion of extracted features into feature vec-

tors and the classification mechanism employed for the detection of Android ran-

somware.

Research Methodology 28

Algorithm 1 Feature Extraction and Classification

INPUT: APKFile

OUTPUT: Malware or Ransomware
1: for all f ∈ F do . F is APK folder
2: APKFile ← Open(file)
3: manifestFile , javaFile← APK Tool(APKFile)
4: if manifestFile == androidmanifest.xml then
5: permission← Get Permission(androidmanifest.xml)
6: for all permission(i) ∈ permission do
7: if Permission(list)[i] == permission(i) then
8: V ector(Permission)[]← 1
9: end if

10: V ector(Permission)[]← 0

11: end for

12: end if
13: networkvector ← TF IDF (manifestFile, javaFile, networkFile)
14: Textvector ← TF IDF (manifestFile, javaFile, T extFile)
15: Dynamicvector ← V irtual Environment(APKFile)
16: Output1 ← Classify(networkvector + Textvector + V ectorPermission)
17: Output2 ← Classify(Dynamicvector)
18: Output← OR(Output1, Output2)
19: end for
20: Return Output

3.1.1 Training of Hybrid Distinct Ensembles

The training phase of hybrid analyzer starts with the analysis of 50% Android

ransomware and 50% non-ransomware applications in a controlled environment.

The first phase is of feature extraction. Static features are extracted using a

feature extraction script that takes APK file as input, disassemble it into Java and

XML files and extract permissions from AndroidManifest.xml file, network-based

features and text from java files. All these features are transformed into a feature

vector for training machine learning base static ensemble model. Dynamic features

are extracted by executing applications in Android emulator called Genymotion.

CPU usage, system calls statistics, and memory usage are recorded by executing

applications one by one on Android emulator.

Research Methodology 29

Figure 3.2: Training of ML based static ensemble analyzer

These features are utilized to produce a feature vector for the machine learning

base dynamic ensemble model. Two separate ensemble machine learning models

are used to classify applications based on their static and dynamic features as

shown in Figures3.2 and Figure 3.3 Each ensemble is trained in such a way that

the feature vectors along with their category (ransomware labeled as 1 and non-

ransomware labeled as 0) are supplied to the ensemble. Each member classifier

(e.g., Näıve Bayes, Random forest, AdaBoost, Decision Tree etc.,) in the ensem-

ble is trained on each entire feature vector shown in the Figure3.2 and Figure 3.3.

Once all these ensemble members are trained they can classify the applications and

assign class labels RW/NRW. Outputs of all member classifiers are provided to

Meta classifier that combines these outputs via combination rule (majority voting)

for assigning the one final label. Since we are dealing with a two-class problem,

therefore, we use majority voting scheme to decide the final label. Based on the

outputs of both ensemble models final label is assigned to the applications. For

assigning the final label ”OR” operation is performed on the outputs of both en-

sembles. Thus, if anyone of the two ensembles assigns RW label to the application,

it will be classified as ransomware.

Figure 3.3: Training of ML based dynamic ensemble analyzer

Research Methodology 30

After training, we will validate our framework on fabricated data set of Android

ransomware to examine its capability of mitigating adversarial evasion attacks.

To achieve the objective of training machine learning algorithms a few important

steps are there. These steps are discussed in the upcoming sections.

3.1.2 Data Collection

The whole dataset used in this study comprises of two datasets: Android mal-

ware (Drebin [42]) and Android ransomware (RansomProber [43]) in the form of

.apk files. For malware data set of Drebin [42] is collected. Drebin is a bench-

mark repository that contains more than five thousand malware applications from

179 different malware families. While the data set of Android ransomware is

collected from [43] which was used for experiments in RansomProber. Ransom-

Prober dataset consists of more than two thousand samples obtained from related

security announcements, threat reports from existing antivirus companies and se-

curity blogs [11]. Their data set demonstrates a good coverage of existing Android

ransomware families.

Table 3.1: Detail of Experimented Dataset

Application Type
Total Number of

Applications

Applications used

in experiments

Ransomware 5500 275

Non-Ramsomware 2280 275

Table 3.1 depicts the overview of dataset used for experiments in the proposed

technique. The employed classifiers were trained on the behavioral features of both

randomly selected ransomware and non-ransomware applications along with the

explicit labeling (Ransomware/Non-Ransomware). Disjoint sets of data are used

for training and testing purpose. We have used a large number of applications

to ensure that our data set is unbiased. Our used data set is not limited to the

applications with certain attributes that may help in created results.

Research Methodology 31

3.1.3 Extraction of Static Features

Our experimental data set consists of .apk files. Android Package Kit (APK) is

a file format that Android uses to distribute and install applications. It contains

all elements such as classes (.dex files), resource files and manifest files that an

application needs to install correctly on the device. The manifest file contains per-

missions and other configuration details of the application. Our feature extraction

process starts by acquiring APK files using a feature extraction script (shown in

Appendix A). We have written a python script to extract permissions from mani-

fest.xml file, text, and network-based features (IP addresses, email addresses and

URL) from dex files. The script decompiles the APK files, extract these features

and store them into .txt files. We further used these .txt files to extract feature

vectors of required features. Detail of feature extraction script:

1. The script takes APK file as input and uses Apk Tool to disintegrate the

APK file.

2. After disintegration we get .xml files, .dex files and resource files.

3. The script reads ‘uses-permission’ tags and extract all permissions from An-

droidManifest.xml file and store these permissions in a .txt file.

4. Similarly, it uses .dex files to extract text from source code. URL, email

addresses and IP addresses are extracted from dex files using regular expres-

sions. After extraction, these features are stored in .txt files (as shown in

Figure 3.5).

Figure 3.4: Python Feature Extraction script working

Research Methodology 32

Working of feature extraction script is displayed in Figure 3.4. Similar process

is repeated for all APK files. .txt files of both ransomware and non-ransomware

applications are used for feature vector creation. We have seen that a certain

number of permissions are common in ransomware applications likewise, there are

some permissions that are similar in non-ransomware applications.

Figure 3.5: .txt Files of features extracted by the script

Figure 3.6 represents all those permissions that are mostly used by non-ransomware

malware applications. From Figure 3.6 it can be seen that INTERNET and

READ SETTINGS have a percentage of 14, these are the most used permissions

in non-ransomware applications among all other 8 permissions. Through INTER-

NET permission application can access the internet.

Figure 3.6: Ten most used permissions by non-ransomware applications

Research Methodology 33

It allows the application to open network sockets. READ SETTINGS permis-

sion allows an application to read the settings and shortcuts in the home. IN-

STALL SHORTCUTS is the second most requested permission having a percent-

age of 12. It allows an application to install a shortcut in Launcher. READ

PHONE STATE provides an application requesting it with read-only access to a

huge amount of data such as number of the device, IMEI, information of the SIM

card like IMSI number. SEND SMS permissions enable the application to catch

any response to the initial text message and hide the exchange of text messages

from user. Application asks ACCESS NETWORK STATE permission in order to

access all information about networks. The application utilizing instant messages

needs SEND SMS permissions to send messages from device.

ACCESS WIFI STATE allows the application to access information about Wi-Fi

networks. INSTALL PACKAGES permission, if granted, allows the application to

install new applications on the device. Application uses ACCESS COARSE LO-

CATION permission to access approximate location. Most frequent permissions in

ransomware applications are depicted in Figure 3.7. RECEIVE BOOT COMPLET

ED and WAKE LOCK are the most requested permissions in ransomware appli-

cations. The percentage of these permissions is 15, highest among all.

Figure 3.7: Ten most used permissions by ransomware applications

Research Methodology 34

RECEIVE BOOT COMPLETED allows the application to receive the ACTION

BOOT COMPLETED which is broadcast after the system finishes booting. WAKE

LOCK allows using power manager wake locks to keep screen and processor from

sleeping. The second most used permission is GET-TASK, through GET TASK

permission application get information about recently running tasks. Ransomware

uses permissions such as KILL BACKGROUND PROCESS in order to stop the

running antivirus processes to prevent detection.

WRITE EXTERNAL STORAGE allows application to write to the external stor-

age. BIND DEVICE-ADMIN ensure that the system will only interact with one

application. Removal of ransomware granted with these permissions becomes much

difficult. Application with SYSTEM ALERT WINDOW permission can create

pop-up windows with advertisements while the user browses the web or write a

text message. All these extracted permissions are converted into a binary fea-

ture vector. the feature vector of each application created from permissions and

other static features (network addresses and text) along with application label

(RW/NRW) is used to train machine learning based static ensemble model. The

static feature extraction process can be seen in Figure 3.2. The training data set

consists of 50% ransomware and 50% non- ransomware applications.

3.1.4 Extraction of Dynamic Features

Dynamic analysis involves the execution of Android application in the virtual en-

vironment to examine its run time behavior. It is effective to detect the malicious

behavior of applications that remain undetected during static analysis. In pre-

vious research work, a lot of attention has been paid to study data leakage and

sequence of API calls in dynamic analysis [7, 9]. A promising approach toward

efficient dynamic Android ransomware detection is the identification of a limited

set of features that provide the ability to discriminate between ransomware and

non-ransomware behavior. In our proposed framework we explore such kind of dy-

namic features (CPU usage, System calls statistics, Memory usage) that are less

Research Methodology 35

expensive and more indicative for detecting the presence of Android ransomware

[13].

Hence execution traces containing this data needed to be collected by running

the application in a controlled environment. These traces have been recorded by

manually executing applications one at a time for the interval of 10 minutes in

Android emulator. Though, some of the traces are shorter, due to the emulator

minor setbacks. However, longer execution period provides us more significant

results. The Android emulator Genymotion release 3.0.2 is selected for dynamic

analysis of Android malware applications because it’s an open-source software and

supports Android studio.

The reason behind using Android emulator instead of the original device is that

the emulation environment gives the more capacity to execute a large number of

malicious samples, within a reasonable time, so that the obtained results have

statistical significance [44]. The virtual device is reinitialized every time before

running each new application to avoid the possible interventions from previously

running application such as changed setting, running processes and modifications

of operating system files, etc. ADB (Android Debug Bridge) is used to monitor

memory usage and CPU usage of the applications. ADB is a command-line tool

that allows PC to communicate with an emulator instance or Android device.

Strace (a tool for tracing system calls) is used to collect system calls of applica-

tions. For dynamic features extraction the following steps are performed for each

application:

1. Starting of Android Virtual Device from genymotion.

2. Installation of application on Android virtual device.

3. Obtaining Package name of the APK.

4. Making different events (e.g., swipes, presses, touch screens) during the ex-

ecution of application.

5. Memory monitoring by using ’adb shell dumpsys meminfo package name’

command (shown in Figure 3.8).

Research Methodology 36

6. Recording CPU usage by means of ’adb shell dumpsys cpuinfo’ command

(as represented in Figure 3.9).

7. Identify and retrieve process id (pid) using the package name.

8. Collecting system calls statistics through ’strace –p pid’. An entry point to

trace system calls of the process as displayed in Figure 3.10.

9. Terminating application after 10 minutes.

10. Saving these features in a .xlsx file along with the APK name (As illustrated

in Figure 3.11).

11. Uninstall of application.

Figure 3.8: Memory usage of application

Research Methodology 37

We have taken into account all the features related to system calls, memory and

CPU usage that can be accessed in Android. In total there are 73 features for

each running application. These features are listed in Table 3.2. There are 5 fea-

tures related to CPU: three related to CPU usage and two related to the virtual

memory exceptions (major and minor faults). 63 features are related to the dif-

ferent aspects of memory usage and 5 represents statistics of system calls. These

features are further converted into a feature vector for the purpose of classification.

Figure 3.9: CPU usage during application execution

Figure 3.10: System calls log

Research Methodology 38

Table 3.2: List of collected dynamic features

Category Feature Names

Total CPU Usage

User CPU UsageCPU usage

Kernel CPU Usage

Page Minor Faults

CPU

Virtual Memory
Page Major Faults

Memory Native Pss

Native Private Dirty

Native Shared Dirty

Native Heap Size

Native Heap Alloc

Native memory

Native Heap Free

Dalvik Pss

Dalvik Private Dirty

Dalvik Shared Dirty

Dalvik Heap Size

Dalvik Heap Alloc

Dalvik memory

Dalvik Heap Free

Ashmem Pss

Ashmem Private DirtyAndroid shared memory

Ashmem Shared Dirty

.so mmap Pss

.so mmap Private DirtyMemory-mapped native Code

.so mmap Shared Dirty

.dex mmap Pss

.dex mmap Private DirtyMemory mapped Dalvik

.dex mmap Shared Dirty

.ttf mmap Pss

.ttf mmap Private DirtyMemory-mapped fonts

.ttf mmap Shared Dirty

Research Methodology 39

.oat mmap Pss

.oat mmap Private Dirty

.oat mmap Shared Dirty

.art mmap Pss

.art mmap Private Dirty

.art mmap Shared Dirty

.apk mmap Pss

.apk mmap Private Dirty

.apk mmap Shared Dirty

Other mmap Pss

Other mmap Private Dirty

Other memory-mapped files

Other mmap shared Dirty

Unknown Pss

Unknown Private Dirty

Unknown Shared Dirty

Other dev Pss

Other dev private Dirty

Non-classified memory

Other dev Shared Dirty

TOTAL Pss

TOTAL Private Dirty

TOTAL Shared Dirty

TOTAL Heap Size

TOTAL Heap Alloc

Memory Totals

TOTAL Heap Free

Views

ViewRoot Impl

App Contexts

Activities

Assets

AssetManagers

Objects

Local Binders

Research Methodology 40

Proxy Binders

Parcel Memory

Parcel Count

Death Recipient

OpenSSL Sockets

MEMORY-USED

PAGECACHE-OVERFLOW

Memory

SQL

MALLOC-SIZE

Total number of Syscalls occuring

Name of all syscalls occuring
System calls logs

No. of times each system call

occurring (once or multiple times)

Figure 3.11: Dynamic features sheet

3.1.5 Static Feature Vector

.txt files of Permissions, Text, IP, URL, and email are used for feature vector cre-

ation. Feature vector script read .txt files of both ransomware and non-ransomware

applications and print feature vectors of each application after getting a record of

all features to identify unique features of each application and put the record in the

output .csv file. Let V be a vector consisting of a set of 400 Android permissions.

V= S1, S2,, Si

Research Methodology 41

Si= 1 if ith permission exists

0 otherwise

For every application at its location in the data set, we produce a binary sequence.

All the recognized unique permissions are then arranged as a sequence of 0 and 1.

The presence of a specific permission is denoted by 1 and the absence is denoted

by 0 in the list. Following sequence represents an example of the permission vector

for Android ransomware application.

1 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1 0 1 1

0 1 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1

1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1

0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1

Last bit of vector represent the category of application. in the above example,

1 at the end of the feature vector represents that the permission vector is of a

ransomware application. In case of non-ransomware last bit will be 0. We removed

all the redundant permissions from data set because redundancy can create adverse

effects in classification. After removing redundant permissions, we obtained 166

unique permissions.

We created feature vectors of text and network-based features by mean of TF-IDF

vectorizer as both contain strings [45]. TF-IDF vectorizer transforms textual fea-

tures into feature vectors that can be used as input to the classification algorithm.

The TFIDF is more extravagant and successful representation for textual data

classification purpose [46]. The static feature vectors along with their application

category (1/0) are used to train machine learning based static ensemble analyzer.

3.1.6 Dynamic Feature Vector

Multiple features of each application shown in Table 3.2 obtained during dynamic

analysis are transformed into numeric feature vectors. The presence of a feature

is denoted by its value, and 0 in case of absence of feature. These feature vectors

Research Methodology 42

along with application category are used to train machine learning based dynamic

ensemble analyzer that classifies Android malware applications into ransomware

and non-ransomware in the given data set.

3.1.7 Feature Selection using InfoGain

There are huge numbers of features in the data set, and it can happen that irrele-

vant and redundant features confuse classifiers and decrease detection performance

[47]. Therefore it is needed to diminish those features in order to find the most

relevant among them that helps to solve predictive modeling problems. For this

purpose, we performed features selection based on the information gain criterion

[48] to find the most appropriate features by assigning weights to the information,

to emphasize the effectiveness of the feature. We evaluated feature usefulness by

Information Gain Attribute Evaluator a method from WEKA machine learning

tool. We selected 72 out of 2911 after applying feature selection algorithm based

on the static results and selected 45 out of 130 based on the dynamic results. The

information gain of an attribute C on sample data S can be calculated as below:

InfoGain(C, rj) = entropy(C) - entropy (C—rj)

3.1.8 Feature Selection using PCA

In certain applications, it is desired to pick a subset of unique features rather than

finding a mapping that utilizes all of the features. The advantages of using sub-

set of features could be the reduction in computing cost and elimination of noisy

features while keeping their information by utilizing clean features. The other

feature selection algorithms are either computationally expensive or select subset

of redundant features. Consequently, we performed feature selection using Prin-

cipal Component Analysis (PCA). PCA is a dimensionality reduction algorithm

that allows us to recognize the correlations and patterns in the dataset [49]. So

the dataset can be transformed into low dimensional dataset by removing these

Research Methodology 43

correlations and without any loss of important information. PCA is a mathemat-

ical procedure that converts a number of correlated variables into small number

of uncorrelated variables known as principal components. This small subset of

uncorrelated variables is a lot more feasible to recognize and practice in analysis

as compared to the large set of correlated features [50].

3.2 Classifiers used for Training

The obtained static and dynamic features (as shown in the Figure 3.2 and Figure

3.3) are used to train static and dynamic ensemble machine learning analyzers

respectively. Selection of correct member classifiers in the ensemble for training

is the most critical phase of our research. Previous studies [9, 13, 17] suggested

us different classifiers based on their accomplished results. Therefore we selected

multiple classifiers including Naive Bayes [22], Random forest [23], Decision Tree

(J48) [51], Support Vector Machine (SVM), Logistic Regression, AdaBoost [27],

etc., for the proposed Android ransomware detection framework. In our research

work we have used supervised learning. Supervised learning is based on label data

set. Thus we have an initial data set where data samples are mapped to the correct

outcomes.

We used data set of 550 Android malware applications (50% ransomware and

50% non-ransomware) and performed 10-fold cross-validation utilizing the whole

data set. In the matter of 10-fold cross-validation, the data set is distributed

into 10 parts, and in each cycle one part comprising of nine folds, is taken into

consideration as a training set and the rest of the part is utilized as a test set.

This technique is reiterated ten times, each time a different training and test

set is used. After performing ten iterations the average detection performance is

declared. Cross-validation provides the greatest accuracy of implementation [52].

We have used WEKA (Waikato Environment for Knowledge Analysis) tool for the

training of classifiers. WEKA is a collection of machine learning algorithms for

data mining tasks. It is an open-source software written in java, issued under the

Research Methodology 44

GNU General Public License. It contains tools for data preparation, classification,

regression, and visualization, etc., [31].

3.2.1 Naive Bayes

Naive Bayes is probabilistic classifier. It applies probability theory and Bayes the-

orem for making assumptions that features are independent [22]. It is particularly

suited where the dimensionality of the input is high. Despite its simplicity, it has

proven to be fast, accurate and reliable. It often outperforms more sophisticated

classification methods [53]. Naive Bayes is incorporated in our research work be-

cause of its success being mentioned in malware classification studies [13] from

several years.

3.2.2 Decision Tree (J48)

We have used another machine learning algorithm Decision Tree to find out the

way the attributes-vector behaves for a number of samples. Also on the basis of the

attribute value, the values for the newly generated samples are being found. The

value of attribute may lie in the data set of dependent and independent variables.

Dependent variables indicate the attributes to be predicted while independent

variables indicate the attributes that help in the prediction of dependent variables

[51]. Decision Tree generates rules for the prediction of the target variable. With

the help of a tree classification algorithm, the critical distribution of data is easily

understandable. J48 (i.e., an open-source java implementation of C4.5 release in

WEKA data mining tool) performs accounting of missing values, decision Tree

pruning, continuous attribute value ranges, derivation of rules, etc.,[54]

3.2.3 Random Tree

Random tree is a tree that is built randomly from a lot of potential trees that have

k number of random features at every node. Here in this situation “At random”

Research Methodology 45

implies that in the set of trees every individual tree has an equivalent stroke to be

sampled. Then it can be said that each tree has “Uniform” dispersion. Random

trees can be produced proficiently and the integration of huge collections of random

trees prompts exact models [24].

3.2.4 Random Forest

A random forest consists of multiple random decision trees. Two types of ran-

domness are built in the trees. Firstly, each tree is built on a random sample from

original data. Secondly at each node a subset of features are randomly selected

to generate the best split [23]. From the previous studies it has been observed

that Random Forest has outstanding accuracy appeared to be so far among the

currently used classification algorithms due to its effective execution on large data

set and eventually estimation of important variables in classification [55].

3.2.5 Support Vector Classifier

Support vector classifier (SVC) is a supervised machine learning algorithm that can

be employed for both classification and regression purposes. The objective of SVC

is to fit the provided data, running the best fit hyper plane that categorizes the

provided data. After getting the hyper plane features can be fed to the classifier to

see what the predicted class is. For multi-classes SVC uses one verses one strategy

[25].

3.2.6 Logistic Regression

Logistic regression (LR) is a linear classifier that computes the restrictive proba-

bilities of possible results and selects the one with the greatest probability. This

approach is commonly used in various fields. Logistic regression converts its out-

put using the logistic sigmoid function to restore a probability value which would

then be able to be mapped to at least two discrete classes [26].

Research Methodology 46

3.2.7 Adaptive Boosting (AdaBoosting)

Boosting is a common ensemble method that generates a strong classifier from

various weak classifiers. This is done by constructing a model from training data,

then making a model to rectify the errors from the principal model. Models are

added until the training set is perfectly predicted without any error or extreme

numbers of models are added. AdaBoost works by weighting the observations, it

puts more weight on problematic or hard to classify samples and less on those that

are effectively handled before.

The addition of new weak learners is made sequentially that focus their training on

the most difficult patterns [27]. AdaBoost is a Meta classification algorithm that

can be utilized with numerous different algorithms to boost their performance by

consolidating their results into a weighted entirety that represents the concluding

output. Here we used AdaBoost M1 with SVM base for ensemble evaluation since

it achieves better performance than the AdaBoost with another kind of weak

learners [56].

3.2.8 Gradient Boosting

Gradient boosting (GB) used to train numerous models in a progressive, addi-

tive and sequential manner. AdaBoost and gradient boosting differs only from

shortcoming identifications of weak learners. Adaboost identify the shortcoming

by using high weight data points while gradient boosting perform same by using

gradients in the loss function. The output of different weak learners is combined

in such a way that its loss function can be optimized [57]. Loss function is a mea-

surement of how good the predictive model is at classifying the underlying data.

Gradient boosting allows optimizing the loss function by adding weak learners in

gradient decent procedure. GB works great with numeric values, as it requires

no data pre-processing. It is capable of handling missing data and often provide

predictive accuracy that cannot be beat [28].

Research Methodology 47

3.2.9 Support Vector Machine with Sequential Minimal

Optimization

Support Vector Machine (SVM) examines identifies and matches patterns of data

for classification purpose. It uses hyperplane to divide data into regions of n-

dimensional space. The hyperplane keeps the values of a margin between the

regions to the maximum. SVM uses a kernel function that leads to a non-linear

classification surface instead of a linear hyperplane [58]. Sequential Minimal Opti-

mization (SMO) is an iterative algorithm utilized for resolving optimization prob-

lems that arise in training phase Support Vector Machine (SVM). SMO perform

fragmentation of the problem into a sequence of smallest possible sub-problems,

which are then resolved analytically [29].

3.2.10 JRip

JRip is a rule-based classification algorithm. It devices a proportional rule learner

called as “Repeated Incremental Pruning to Produce Error Reduction (RIPPER)”

to extract the rule directly from data and utilizes consecutive covering algorithms

to make requested rule lists. The algorithm experiences four stages. (1) Growing

a rule (2) Pruning (3) Optimization and (4)Selection [30].

3.3 Evaluation Measurement

For performance evaluation of different ensemble analyzers we use the following

metrics.

Accuracy:

We have used accuracy for accessing results. It is the fraction of total number of

applications correctly classified as ransomware or non-ransomware. The accuracy

of a detection mechanism can be calculated as Equation (3.1) [10] [19].

Research Methodology 48

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

Precision: Precision is the fraction of the predicted correctly classified applica-

tions to the total of all applications that are correctly real positive. It can be

calculated from Equation (3.2) [12].

Precision =
TP

TP + FP
(3.2)

Recall: The recall is a fraction of the predicted correctly classified applications

to the total number of applications classified correctly or incorrectly. Recall can

be determined from Equation (3.3) [12].

Recall =
TP

TP + FN
(3.3)

F-Measure: F-Measure is the harmonic mean of precision and recall. It sym-

bolizes the capability of the model for making fine distinctions. F-Measure of a

detection model can be computed by means of Equation (3.4) [12].

F-Measure = 2× Precision×Recall

Precision + Recall
(3.4)

Chapter 4

Results and Discussion

4.1 Introduction

In this chapter, we will evaluate our proposed framework of Android ransomware

detection based on the ensemble machine learning techniques to mitigate the eva-

sion attacks. We have used improved hybrid analysis to arrange the data set for

the training of machine learning based hybrid distinct ensemble analyzer. We

will talk about the data set preparation through hybrid analysis, data set, fea-

ture selection, experimental setup and performance of the proposed framework by

evaluating the results obtained.

4.2 Experimental Setup

Our proposed framework is based on a hybrid analysis that requires good compu-

tational resources for both static and dynamic analysis. Both static and dynamic

analyses have particular requirements for computational resources. The dynamic

analysis require more resources when contrasted with the static analysis. The

Machine used for experiments and its specification is shown in Table 4.1.

49

Results and Discussion 50

Table 4.1: System configuration

CPU Intel R© CoreTM i5-5200 CPU @ 2.20GHz

Memory 4 GB

OS Window 8

APK Decompilation Tool Apk Tool

Data mining Tool Weka 3.8.3

Android Emulator Configuration

Platform Genymotion 2.12.2

Device Custom Tablet

Android version 6.0.0

API Level 21

CPU 1.5 GHz

Memory size 2048 MB

Data Disk Capacity 16384

4.3 Dataset

In this research work the data set used for experiments, comprised of two cate-

gories of Android malware applications: ransomware and non-ransomware. An-

droid ransomware applications were collected from RansomProber data set [43].

The collected ransomware data set consists of 2280 samples that demonstrate a

good coverage of existing Android ransomware families. Android malware (non-

ransomware) applications were collected from Drebin data set [42]. Which consists

of 5500 malware applications based on the 178 Android malware families. The data

set contains multiple variants of each family. We performed experiments on the

data set of randomly selected 550 Android malware applications comprising of 50%

ransomware and 50% non-ransomware applications. We set up two types of exper-

imental environments for static and dynamic analyzers considered here. Detail of

both experimental setups can be seen in Chapter 3. The features extracted from

both analysis are recorded in the form of Boolean vectors. For the training and

Results and Discussion 51

testing purpose, we used 10-fold cross-validation methods. Feature count obtained

as a result of static analysis is 2911 however dynamic feature count is 130.

4.4 Feature Selection

Better classification results can be achieved if we add more features to the data set.

Yet, some times keeping a large number of redundant features not only increases

the learning time but also affect the reliability and accuracy of the classification

rate obtained. Irrelevant and redundant features can confuse classifiers and de-

crease the detection rate. Therefore the reduction in high-dimension of feature in-

stances by removing irrelevant features is an essential requirement. We performed

a separate feature selection phase to select those attributes of the data set which are

most appropriate and helpful in identifying application class (RW/NRW). Before

performing feature selection we have cleaned our data set by removing redundant

features. Normally the decision of keeping or removing a specific set of features

relies upon the platform which provides that features. In this way, while perform-

ing feature selection we have given more consideration to the features provided by

the Android platform.

Figure 4.1: Top-ranked static features by InfoGain method

Results and Discussion 52

For this purpose we used Information gain (IG) method and Principal Component

Analysis (PCA) (as discussed in Section 3.1.7 and Section 3.1.8) to get the list of

most appropriate features who have significant role in classification. Information

gain is a feature ranking technique which depends on decision trees that manifest

a great classification performance. InfoGain selected total 72 features out of 2911

features produced by the static analysis. These features consist of permissions,

network addresses, and text. Figure 4.1 describes the top ten ranked features

obtained through the InfoGain method from the whole static data set of. All

these features play an important role in the detection of Android ransomware

as they retain the maximum information for classification. From Figure 4.1, it

can be depicted that the PEMISSION RECIEVE BOOT COMPLETEED has the

highest rank among all other features, similarly, PERMISSIOM VIBRATE has the

second-highest rank and PERMISSION READ SMS has the lowest rank among all

other nine features. The maximum range of ranked static features is 0.17 which is

not much significant. The brief description of top-ranked static features obtained

through InfoGain method is provided in Table 4.2.

Table 4.2: Description of top ranked static features

Feature Name Description

PERMISSION RECEIVE BOOT

COMPLETED

Allows an application to receive the

ACTION BOOT COMPLETED which

is broadcast after the system finishes

booting.

PERMISSION VIBRATE Allows access to vibrator.

PERMISSION CALL PHONE

Allows application to initiate a phone

call without going through the dialer

user interface for the user to confirm

the call.

PERMISSION WAKE LOCK

Allows using Power Manager Wake

Locks to keep processor from sleeping

or screen from dimming.

Results and Discussion 53

PERMISSION DISABLE

KEYGUARD

Allows an application to disable the

key guard if not secure.

PERMISSION RECEIVE SMS
Allows application to intercept any

responses to the initial text message.

PERMISSION SEND SMS

Applications leveraging text messages

need this permission to send them from

the device.

PERMISSION WRITE

EXTERNAL STORAGE

allows application to write to the

external storage

PERMISSION ACCESS

NETWORK STATE

Allows application to access all

information about network.

PERMISSION READ SMS

Allows application to intercept and

send text messages and hide the text

message exchange from the user.

Top-ranked dynamic features with their corresponding scores obtained from info-

Gain method are represented in Figure 4.2.

Figure 4.2: Top-ranked dynamic features by InfoGain method

Out of 130 dynamic features 45 are selected by InfoGain method. From the figure,

it can be clearly seen that sendto obtained the highest rank which is 0.35 through

Results and Discussion 54

InfoGain method.It is system calls based feature obtained through dynamic anal-

ysis. Table 4.3 indicates the role of each selected dynamic features in Android

application. It can be seen that system calls play a vital role in the classification

and detection of Android ransomware.

Table 4.3: Description of top ranked dynamic features

Feature Name Description

sendto Used to send a message to another socket.

close

Closes a file descriptor, so that it no longer refers to any

file and may be reused. Any record locks held on the file,

it was associated with, and own by the process, are

remove.

ioctl

Manipulates the underlying device parameters of

special file. Particularly, many operating characteristics

of character special files may be controlled with this

request.

epoll pwait
Wait for an I/O event on an epoll file referred to by the

file descriptor.

madvise

Give advice or directions to the kernel about the address

range beginning at address addr and with size length bytes.

The goal of advice is to improve application performance.

clock gettime Retrieve the time of specified clock.

getuid32
Return the real user ID of the calling process.

Supporting 32-bit IDs.

writev Write data into multiple buffers.

rt sigprocmask

Fetch or change the signal mask of the calling thread.

Signal mask is the set of signals whose delivery is currently

blocked by the caller.

mmap2 Map files or devices into memory.

Results and Discussion 55

4.5 Classification

In this stage, we examined the classifier used over the data set of Android malware

(both ransomware and non-ransomware). The purpose behind doing this is to find

out an appropriate classifier ensemble that can distinguish between ransomware

and non-ransomware applications using feature patterns and will be helpful in

mitigating evasion attacks. We have considered multiple classification algorithms

including Näıve Bayes [22], Random forest [23], Decision tree (J48) [51], Sup-

port Vector Classifier (SVC) [25], Logistic Regression [26], Gradient Boosting [27]

and Ada boosting [57], etc., to be used in different combinations in ensemble for

evaluation of this approach. We assess optimal parameters for each classifier by ex-

periments and using both training and testing results. These optimal parameters

produce great classification accuracy on the bases of 10-fold cross-validation.

Cross-validation is a technique to evaluate machine learning algorithms by parti-

tioning the original data set into two sets: training set is to train the algorithm

and test set is to evaluate the algorithm. In k-fold cross-validation, the original

data set is randomly partitioned into k equal size subsets. From the k subsets,

a single subset is held out as a validation set for testing the algorithm. The re-

maining k-1 subsets are used as training set. The cross-validation process is then

repeated exactly k times (the number of folds). Hence each of the k subsets is

used exactly one time as validation set [52]. The benefit of using this strategy is

that all observations are used for both training and testing, and each observation

is used for validation exactly once.

After the k experiments, the weighted average of the classification accuracy is

calculated, which indicates the suitability of the parameters of classifier. At last,

we select the algorithm that produces the best results in the form of the optimal

values of Precision, Recall and F-Measure (as discussed in Section 3.3).

Results and Discussion 56

4.6 Classification Results with Feature Selection

Based on the values of True positives (TP), False positives (FP) and False Nega-

tives (FN) we have calculated precision, recall and F-measure for the static, dy-

namic and hybrid data respectively. These measurements were made by evaluating

each single classification algorithm as well as different combinations of ensemble

learning.

4.6.1 Classification Results of Top Ranked Features from

InfoGain

Figure 4.3 and Figure 4.4 shows effects of data set shuffling on the F-Measure

during testing and training, and the results of precision and recall of classification

using single classifier and different ensembles on selected static data set through

InfoGain method. Precision and recall values show the same range due to the

nature of the employed data set. The Figure 4.3 displays that single classifiers J48,

Figure 4.3: Evaluation results of ranked static data (InfoGain) Using a single
machine learning algorithm

RF, LR, GB, and AB gain the equally highest precision value of 0.816 that shows

their equivalent improvement of 9% and 33% against NB and SVC respectively.

J48, RF, LR, GB, and AB also have equal recall and F-measures, which depicts

Results and Discussion 57

their better performance as compared to the NB and SVC on the selected static

data. Comparatively the range of precision, recall, and F-measure is similar for

Figure 4.4: Evaluation results of ranked static data (InfoGain) using ensemble
learning

this data in case of both single algorithm and ensemble algorithms. Figure 4.4

displays the results of precision, recall and F-measure on static data using ensemble

learning. in order to find the best ensemble for both static and dynamic analysis,

we performed experiments using odd (three or five) number of base algorithms in

different combinations and applied majority voting for results. Different ensemble

algorithms along with their performance results on the static ranked data set are

shown in Figure 4.4. It can be seen from Figure that ensemble learning in all

combination of algorithms has similar precision, recall, and F-measure which are

0.816, 0.821 and 0.814 respectively. Figure 4.5 and Figure 4.5 depicts the precision,

recall, and F-Measure of single classifier and different ensemble models for dynamic

data.

Figure 4.5 shows that AB algorithm generated the highest 0.967, 0.967 and 0.966

values of precision, recall, and F-measure respectively, among all other six algo-

rithms. RF is the second-best performing algorithm with 0.959 precision, recall,

Results and Discussion 58

Figure 4.5: Evaluation results of ranked dynamic data (InfoGain) Using a
single machine learning algorithm

and F-measure. However, SVC presented the lowest performance with 0.485 pre-

cision, 0.235 recall and 0.316 F-measure. Figure 4.6 describes the performance of

ensembles on dynamic ranked data. For the selected dynamic data two ensembles,

one with the base classifiers C4.5 decision tree + random tree + random forests

and

Figure 4.6: Evaluation results of ranked dynamic data (InfoGain) using
ensemble learning

Results and Discussion 59

the second with Random tree + Random Forest + SVM with SMO base algo-

rithms have similar highest precision, recall and F-measures value, which is 0.956.

Ensemble with SVM with SMO + Logistic regression + Random forest and SVM

with SMO + Logistic regression + AdaBoostM1 with SVM base have the second-

highest values of measures. For the ranked dynamic data, the performance of single

algorithms slightly differs from ensemble algorithms by showing improvement of

1%.

Figure 4.7: Evaluation results of ranked hybrid data (InfoGain) Using single
machine learning algorithm

Figure 4.7 and Figure 4.8 represent the performance measures of hybrid distinct

analysis (as described in Section 3.1) using both single machine learning algorithms

and ensemble algorithms. with values of 0.853, 0.886, and 0.849 for precision, re-

call and F-measure respectively. However, the performance of ensemble having

Random tree + Random Forest + SVM with SMO as member classifiers is sig-

nificant among all others with 0.863 precision, 0.892 recall and 0.86 F-measure

values.

From the figures, it can be seen that the for the ranked hybrid data ensemble

algorithms perform well as compare to single algorithms. From single algorithms

performance measures of AB are highest

Results and Discussion 60

Figure 4.8: Evaluation results of ranked hybrid data (InfoGain) Using ensem-
ble learning

This ensemble algorithm generated 11% improvement over F-measure, 6% over

precision and 10% over F-measure of highly performing single machine learning

algorithm AB.

4.6.2 Classification Results of Top Ranked Features from

PCA

Figure 4.9 represents the performance results of single classifiers for the static data

selected through PCA. Results show that LR is one step ahead with 0.993 pre-

cision, recall and F-measure in case of selected static data of PCA. AB, GB, RF

and J48 exhibits the similar values of precision, recall and F-measure. The perfor-

mance of other two classifiers SVC and NB is also significant wih. NB is the least

performing classifier with 0.969 precision, recall and F-measure on PCA selected

static data. Figure 4.10 represents the classification results of different ensembles

on selected static data of PCA. The results described that the performance of

the ensemble “Logistic regression + C4.5 + SVM with SMO” is highest among

Results and Discussion 61

all with 0.993 value of each performance measure. The performance results of

all other ensembles are similar in terms of 0.989 precision, recall and F-measure,

except the one ensemble “Random tree + Random Forest + SVM with SMO”

whose performance is one percent reduced for the selected static data.

Figure 4.9: Evaluation results of ranked static data (PCA) Using single ma-
chine learning algorithm

Figure 4.10: Evaluation results of ranked static data (PCA) Using ensemble
learning

Results and Discussion 62

The performance results of every single classifier and multiple different ensembles

for the ranked dynamic data gained through PCA are represented in Figure 4.11

and Figure 4.12 From Figure 4.11 it is quite evident that the GB outperformed

all other classifiers with 0.942 recall and 0.94 precision and F-measure. The per-

formance of RF and J48 is equally well. However, SVC performed below average

for the selected dynamic data from PCA.

Figure 4.11: Evaluation results of ranked dynamic data (PCA) Using single
machine learning algorithm

Figure 4.12: Evaluation results of ranked dynamic data (PCA) Using ensem-
ble learning

Results and Discussion 63

In Figure 4.12 it can be seen that the performance of ensemble with base classifiers”

Logistic regression + JRip + Random Forests + C4.5 + SVM with SMO” is

effective among all with 0.945 precision, recall and F-measure. The performance

of ensemble “SVM with SMO + Logistic regression + Simple Logistic regression

+ AdaBoostM1 with SVM base + Adaboosting” is lowest with 0.668 precision,

0.797 recall and 0.622 F-measure.

Figure 4.13 and Figure 4.14 describes the performance results of single classifiers

and ensembles on selected hybrid data of PCA. Figure 4.13 shows that the per-

formance of LR is highest among all with 0.993 precision, recall, and F-measure.

The performance of SVC remained lowest with 0.481 precision, 0.231 recall and

0.312 F-measure values which are not up to the mark. All other single classifiers

apart from SVC performed significantly well for hybrid selected data.

Figure 4.13: Evaluation results of ranked hybrid data (PCA) Using single
machine learning algorithm

Figure 4.14 shows that the ensemble with base classifiers “SVM with SMO +

Logistic regression + Simple Logistic regression + AdaBoostM1 with SVM base +

Adaboosting” outperformed all other ensembles on selected hybrid data through

PCA by obtaining 0.989 precision, recall, and F-measures. The Performance of

other ensembles is also significant. From Figure 4.13 and Figure 4.14 we can see

each single, as well as ensemble classifier, performed much better on selected data

of PCA as compared to the selected data of info gain. Removal of redundant

Results and Discussion 64

features increases accuracy of classification as well as reduces the computational

cost.

Figure 4.14: Evaluation results of ranked dynamic data (PCA) Using ensem-
ble learning

4.7 Classification Results without Feature

Selection

We have seen the performance of single and ensemble algorithms on ranked data

set obtained through InfoGain method. The reduction in the dimension of feature

vectors may have affected the performance of a few classifiers. Therefore we eval-

uated the performance of all single and ensemble classifiers on whole features data

set without performing feature selection. Figure 4.15 and Figure 4.16 represent

the performance measure of single and ensemble algorithms on static data set.

Figure 4.15 shows that AB and GB algorithms have best 0.997 Precision, recalls

and F-measures. RF and LR both have the second best measures that are 0.993.

J48 have 0.973, NB has 0.969, 0.971 and 0.969 precision, recall and F-measure

respectively.

Results and Discussion 65

Figure 4.15: Evaluation results of static data using single machine learning
algorithm

Figure 4.16: Evaluation results of static data using ensemble learning

The performance of SVC remains the lowest among all. Results in Figure 4.16

shows similar behavior as seen in Figure 4.15 the highest measures are 0.997 gen-

erated by ensembles of C4.5 decision tree + random tree + random forests base

algorithms. And Random tree + Random Forest + SVM with SMO base algo-

rithms. The ensemble with lowest performance measures among all other ensem-

bles also has 0.973 precision, recall, and F-measures which is much significant. The

precision, recall, and F-measure for dynamic data using both single and ensemble

Results and Discussion 66

Figure 4.17: Evaluation results for dynamic data using single classifier

Figure 4.18: Evaluation results for dynamic data using ensemble learning

learning are shown in Figures 4.17 and Figure 4.18. The single classifier AB

performs equally well for dynamic data too, with 0.976 precision, recall, and F-

measure. RF generated second highest 0.973, J48 third with 0.956 and GB fourth

with 0.946 precision, recall, and F-measure. In Figure 4.18 Random tree + Ran-

dom Forest + SVM with SMO ensemble achieved high performance with 0.969

precision, recall and F-measure, followed by C4.5 decision tree + random tree +

random forests with 0.966 performance measures.

Results and Discussion 67

Figure 4.19: Evaluation results for Hybrid distinct data using single classifier

Figure 4.19 shows the performance of all single classifiers on hybrid distinct anal-

ysis, which consists of both static and dynamic analysis, a detailed explanation is

given in Section 3.1 (using single classifier instead of the ensemble). The results of

single classifiers for hybrid analysis are given in Figure 4.19 which indicates that

the performance of AB is significantly high among all other single classifiers. All

single algorithms performed well for the provided hybrid distinct data. Except for

SVC whose performance remains same, lowest across all experiments.

Figure 4.20: Evaluation results for Hybrid distinct data using ensemble
Learning

Results and Discussion 68

Figure 4.20 shows the performance of our proposed approach that is hybrid distinct

ensemble analysis explained in Section 3.1 it comprises of two distinct machine

learning ensemble models for static and dynamic features data sets. The results of

all different ensembles are shown in Figure 4.20 which depict that ensemble with

SVM with SMO + Logistic regression + Simple Logistic regression + AdaBoostM1

with SVM base+Adaboosting member classifiers outperformed all other ensembles

as well as single machine learning algorithms by obtaining 100% precision, recall,

and F-measures. The precision of ensemble with SVM with SMO + Logistic

regression + AdaBoostM1 with SVM base member’s algorithms and ensemble

with SVM with SMO + Logistic regression + Random forest base algorithms

are the second high among all other ensembles having 0.997 precision, recall and

F-measure.

From Figure 4.19 and Figure 4.20 it is quite evident that the highest performance is

achieved when the classification is performed using ensemble with base classifiers:

1. SVM with SMO + Logistic regression + Simple Logistic regression + Ad-

aBoostM1 with SVM base + Adaboosting

2. SVM with SMO + Logistic regression + AdaBoostM1 with SVM base.

3. SVM with SMO + Logistic regression + Random forest

The first ensemble achieved the highest performance in classification over the hy-

brid distinct data set, which is improved only 0.3% over the other two ensembles.

This indicates that these ensembles produce similar results in Android ransomware

classification and detection. Logistic regression + C4.5 + SVM with SMO also

displayed good performance with up to 0.993 precision, which specifies that it

is the second-best ensemble algorithm that identifies ransomware correctly from

malware.

Results and Discussion 69

4.8 Test Results of Hybrid Distinct Ensemble

Analysis Approach Against Fabricated

Inputs

In order to validate the resilience of the proposed hybrid distinct ensemble model

against adversarial evasion attacks, we tested the model using different fabricated

inputs. These fabricated inputs are produced by making slight changes in feature

vectors of known Android ransomware. We evaluated the performance of the

proposed model for mitigating evasion attacks by making 1 bit, 10-bits, and 20-

bits changes in the input feature vector of known ransomware.

4.8.1 Results Against 1-bit Fabricated Input

the adversarial evasion attacks because the one-bit change in input feature vector

results in evasion from the underlying classification model. In order to evaluate

the proposed model against such kind of fabrication in the input feature vector, we

randomly selected 100 feature vectors of known ransomware and made a one-bit

change in permissions of each vector.

Figure 4.21: Precision, Recall & F-Measure of Hybrid distinct ensemble anal-
ysis approach Using one-bit fabricated data.

Results and Discussion 70

Hence the permissions are the most susceptible feature for encryption or renaming

obfuscation. We tested the hybrid distinct ensemble analyzer (explained in detail

in Section 3.1) on these fabricated feature vectors, by employing different ensemble

algorithms. Test results of different ensembles in the form of precision, recall, and

F-Measure are represented in Figure 4.21.

From the figure, it can be clearly seen that each ensemble generated 100% mea-

sures of precision, recall, and F-measure for one-bit fabricated data. Figure 4.22

indicates the accuracy of different ensembles on hybrid distinct ensemble analysis

approach. From the figure, it can be depicted the accuracy of each model is 100%

against one-bit fabricated data.

Figure 4.22: Accuracy of Hybrid distinct ensemble analysis approach using
one-bit fabricated data.

4.8.2 Results Against 10-bit Fabricated Input

For more precise resilience validation test of the model, we fabricated the data

of randomly selected 100 feature vectors of Android ransomware, in such a way

that in each feature vector 10-bits related to the permissions features are modified.

Again the hybrid distinct ensemble model is tested on these modified feature vec-

tors. Results of each ensemble are displayed in Figure 4.23. It is evident from the

figure that ensemble with member classifier “SVM with SMO + Logistic regres-

sion + Simple Logistic regression + AdaBoostM1 with SVM base + Adaboosting”

Results and Discussion 71

achieved 97%, 98%, and 100%precision, recall and F-measure values respectively

which are lowest among all. All other ensembles achieved 100% precision, re-

call, and F-measures. Figure 4.24 represents the accuracy of ensembles for 10-bit

fabricated data.

Figure 4.23: Precision, Recall & F-Measure of Hybrid distinct ensemble ana-
lyzer Using 10-bit fabricated data

Figure 4.24: Precision, Recall & F-Measure of Hybrid distinct ensemble ana-
lyzer Using 10-bit fabricated data

Figure 4.23 and Figure 4.24 displays the same picture regarding performance of

different ensembles.

Results and Discussion 72

4.8.3 Results Against 20-bit Fabricated Input

After evaluating the model on 1-bit and 10-bit fabricated inputs and achieving

100% accuracy on all ensembles except one. we tried to test the model against

20-bit fabricated inputs data. The fabricated input feature vectors are obtained

through modifying twenty random bits belonging to the permissions, in each fea-

ture vector of ransomware. This fabrication in each feature vector almost changes

the whole aspect related to the permissions. Since from the extracted data of

permissions, it was assessed that barely any ransomware application can ask more

than twenty unique permissions. On these fabricated feature vectors We tested

our proposed hybrid distinct ensemble analysis model. Figure 4.25 and Figure

4.26 depicts the obtained test results of different ensembles.

Figure 4.25: Precision, Recall & F-Measure Using 10-bit fabricated data

From Figure 4.25 it is quite evident that this substantial fabrication in permissions

does not affect the performance of the hybrid distinct ensemble model. Except

for the one ensemble (SVM with SMO + Logistic Regression + Simple Logistic

regression + AdaBoostM1 with SVM base +Adaboosting), whose precision and

F-Measure are 0.949 and 0.974 respectively, which are lowest among all. Figure

4.26 represents the accuracy of the model using different ensembles on 20-bits

fabricated input feature vectors.

Results and Discussion 73

Figure 4.26: Accuracy of hybrid distinct ensemble against 20-bit fabricated
data

The figure shows the same behavior as seen in Figure 4.25. All ensembles achieved

100% accuracy except the one (SVM with SMO + Logistic Regression + Simple

Logistic regression + AdaBoostM1 with SVM base +Adaboosting). The accuracy

of this ensemble is 94.9%.

The results obtained from these three tests validate this fact that hybrid distinct

ensemble analysis approach is resilient to adversarial evasion attacks. It is capable

of detecting Android ransomware as well as their their fabricated samples with

high accuracy

In spite of the fact that test results of both single and ensemble classifiers have

shown their encouraging performance, the performance of ensemble learning was

somewhat better than single classifiers. This ensemble learning can be used in

anti-ransomware systems. It would be able to detect new and unknown Android

ransomware samples since it works on learned malicious patterns of ransomware

rather than relying on signatures. The reason behind employing hybrid distinct

ensemble learning is to decline the adversarial evasion attacks. The obtained

promising test results of the proposed ensemble-based model against fabricated

inputs validated this fact that it is capable of mitigating evasion attacks.

Results and Discussion 74

Ensemble classifiers are much slower as they required more computational time to

apply multiple machine learning algorithms (three or five) and their results pro-

cessing instead of only one classifier. However, taking into consideration, the rise

of Android ransomware attacks, their irreversible effects, and severity of nature,

it is essential to design such kind of Android ransomware detection technique that

can effectively detect the Android ransomware and mitigate evasion attacks. To

achieve this objective we have to trade off between overhead in terms of computa-

tional cost due to the ensemble learning and the achieved security from ransomware

attacks.

Chapter 5

Conclusion and Future Work

In this chapter, we summarize the study by pointing out its achievements. It

reviews the important findings as well as highlight the potential areas for future

improvement.

5.1 Conclusion

With Android overwhelmingly the most popular operating system for mobile de-

vices, ransomware specially made for Android devices (phone, tablets, etc.,) are

on the rise. The computer security firm Symantec conservatively estimates that

Android ransomware extorts hundreds of millions of dollars from victims annually.

Due to a large amount of money to be made, new versions of Android ransomware

appears frequently. This allows evasion from anti-viruses and intrusion detection

methods. Android malware share some common instructions to the ransomware,

with the exception that ransomware have some other more threatening issues.

Ransomware locks the device or completely encrypt the files stored on device and

demand a ransom for their release. Paying the ransom is no guarantee that the

device will be released, in many cases, it is not. Therefore, the classification of An-

droid ransomware from other malware (non-ransomware) becomes essential. This

75

Conclusion and Future Work 76

research work presents an ensemble machine learning-based approach that consid-

ers a variety of features to classify the Android ransomware from non-ransomware

and mitigate the adversarial evasion attacks. We used a combination of multiple

static and dynamic features such as Permissions, Network-based features (IP ad-

dresses, URL and email addresses), Text, System calls statistics, CPU and memory

usage. In this study, we evaluated the performance of different machine learning

ensembles in Android ransomware detection and classification, on both static and

dynamic feature sets. Moreover, we found the features that play a vital role in

the classification of Android ransomware from other malware. It has been seen

that permissions and system call logs are the two most relevant features for the

detection and classification of Android ransomware from non-ransomware.

We presented a hybrid distinct ensemble analysis approach for the detection and

classification of Android ransomware. As the name suggests it involves the static

and dynamic analysis and two separate ensemble machine learning analyzers for

both static and dynamic sets of features. Our detection mechanism starts with

the extraction of both static and dynamic features from APK files. After features

extraction, these features are provided to the static and dynamic machine learning-

based ensembles which predict the class of malware application as ransomware or

non-ransomware. Both ensemble analyzers consist of a group of an odd number

of member classifiers such as C4.5, Random Forest, JRip, Logistic regression, etc.,

these classifiers make a class prediction for the input feature vector and final

prediction is made by the meta classifier on the basis of majority voting. Malware

application is classified as ransomware if any of the static or dynamic ensemble

analyzers predict it to be ransomware. Moreover, we examine the capability of

the proposed model for mitigating adversarial evasion attacks by testing it on

fabricated inputs. Our experimented data set consists of 550 Android malware

applications consisting of 275 ransomware and 275 non-ransomware applications.

The obtained results support our decisions regarding the training of ensemble ana-

lyzers for both ransomware detection and mitigation of evasion attacks, by accom-

plishing good results. Our proposed distinct ensemble analysis mechanism shows

promising results by achieving 100% values of precision, recall, and F-measure in

Conclusion and Future Work 77

case of Android ransomware detection. Moreover, the proposed hybrid distinct en-

semble analysis approach validates itself as the resilient model against adversarial

evasion attacks by achieving 100% accuracy against fabricated inputs.

5.2 Future Work

Extremely promising classification results from the utilization of ensemble machine

learning analysis encouraged more advancement in this work. We can also prove

our framework on huge size dataset. In the future, we can train such kind of en-

semble machine learning analyzer that can detect the ransomware application and

classify them into families. Moreover, we can employ different other combinations

of machine learning algorithms in ensemble learning. The other feature selection

algorithms can also be utilized to validate our results. Beside that, we can explore

more dynamic and static properties of applications.

Bibliography

[1] Nicoló Andronio, Stefano Zanero, and Federico Maggi. Heldroid: Dissecting

and detecting mobile ransomware. In International Symposium on Recent

Advances in Intrusion Detection, volume 9404, pages 382–404. Springer, 2015.

[2] Daniele Sgandurra, Luis Muñoz-González, Rabih Mohsen, and Emil C. Lupu.

Automated dynamic analysis of ransomware: Benefits, limitations and use

for detection. CoRR, abs/1609.03020, 2016. URL http://arxiv.org/abs/

1609.03020.

[3] Bander Ali Saleh Al-rimy, Mohd Aizaini Maarof, and Syed Zainudeen Mohd

Shaid. Ransomware threat success factors, taxonomy, and countermeasures:

A survey and research directions. Computers & Security, 74:144–166, 2018.

[4] statista. Share of Android OS of global smartphone shipments from 1st quar-

ter 2011 to 2nd quarter 2018*. https://www.statista.com/statistics/

236027/global-smartphone-os-market-share-of-Android/, 2019. [On-

line; accessed March-2019].

[5] Sanggeun Song, Bongjoon Kim, and Sangjun Lee. The effective ransomware

prevention technique using process monitoring on android platform. Mobile

Information Systems, 2016, 2016.

[6] McAfee Labs. McAfee Labs Threats Report September 2018.

[25]https://www.mcafee.com/enterprise/en-us/assets/reports/

rp-quarterly-threats-sep-2018.pdf, 2019. [Online; accessed March-

2019].

78

http://arxiv.org/abs/1609.03020
http://arxiv.org/abs/1609.03020
https://www.statista.com/statistics/236027/global-smartphone-os-market-share-of-Android/
https://www.statista.com/statistics/236027/global-smartphone-os-market-share-of-Android/
[25] https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-sep-2018.pdf
[25] https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-sep-2018.pdf

Bibliography 79

[7] Tianda Yang, Yu Yang, Kai Qian, Dan Chia-Tien Lo, Ying Qian, and Lixin

Tao. Automated detection and analysis for android ransomware. In 2015

IEEE 17th International Conference on High Performance Computing and

Communications, 2015 IEEE 7th International Symposium on Cyberspace

Safety and Security, and 2015 IEEE 12th International Conference on Em-

bedded Software and Systems, pages 1338–1343. IEEE, 2015.

[8] Madiha Ameer, Sumera Murtaza, and Muhammad Aleem. A study of

android-based ransomware: Discovery, methods, and impacts. Journal of

Information Assurance & Security, 13(3):109–117, 2018.

[9] Amirhossein Gharib and Ali Ghorbani. Dna-droid: A real-time android ran-

somware detection framework. In International Conference on Network and

System Security, volume 10394, pages 184–198. Springer, 2017.

[10] Abdulrahman Alzahrani, Ali Alshehri, Hani Alshahrani, Raed Alharthi,

Huirong Fu, Anyi Liu, and Ye Zhu. Randroid: Structural similarity approach

for detecting ransomware applications in android platform. In 2018 IEEE

International Conference on Electro/Information Technology (EIT), pages

0892–0897. IEEE, 2018.

[11] Jing Chen, Chiheng Wang, Ziming Zhao, Kai Chen, Ruiying Du, and Gail-

Joon Ahn. Uncovering the face of android ransomware: Characterization

and real-time detection. IEEE Transactions on Information Forensics and

Security, 13(5):1286–1300, 2017.

[12] Francesco Mercaldo, Vittoria Nardone, Antonella Santone, and Cor-

rado Aaron Visaggio. Ransomware steals your phone. formal methods rescue

it. In International Conference on Formal Techniques for Distributed Objects,

Components, and Systems, volume 9688, pages 212–221. Springer, 2016.

[13] Alberto Ferrante, Miroslaw Malek, Fabio Martinelli, Francesco Mercaldo, and

Jelena Milosevic. Extinguishing ransomware-a hybrid approach to android

ransomware detection. In International Symposium on Foundations and Prac-

tice of Security, volume 10723, pages 242–258. Springer, 2017.

Bibliography 80

[14] Pavol Zavarsky, Dale Lindskog, et al. Experimental analysis of ransomware

on windows and android platforms: Evolution and characterization. Procedia

Computer Science, 94:465–472, 2016.

[15] kaspersky. kaspersky daily. [60]https://www.kaspersky.com/blog/

ransomware-faq/13387/, 2019. [Online; accessed july-2019].

[16] Sana Aurangzeb, Muhammad Aleem, Muhammad Azhar Iqbal, and Muham-

mad Arshad Islam. Ransomware: A survey and trends. Journal of Informa-

tion Assurance & Security, 6(2):48–58, 2017.

[17] Daniel Nieuwenhuizen. A behavioural-based approach to ransomware detec-

tion. Whitepaper. MWR Labs Whitepaper, 2017.

[18] Sergii Banin and Geir Olav Dyrkolbotn. Multinomial malware classification

via low-level features. Digital Investigation, 26:S107–S117, 2018.

[19] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss.

“andromaly”: a behavioral malware detection framework for android devices.

Journal of Intelligent Information Systems, 38(1):161–190, 2012.

[20] Pavel Laskov and Richard Lippmann. Machine learning in adversarial envi-

ronments, 2010.

[21] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of

adversarial machine learning. Pattern Recognition, 84:317–331, 2018.

[22] K.S. Jones, P. Willett, and Jones. Readings in Information Retrieval. Morgan

Kaufmann series in multimedia information and systems. Morgan Kaufman,

1997. ISBN 9781558604544. URL https://books.google.com.pk/books?

id=Nt5nDTYQ0okC.

[23] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[24] Yongheng Zhao and Yanxia Zhang. Comparison of decision tree methods for

finding active objects. Advances in Space Research, 41(12):1955–1959, 2008.

[60] https://www.kaspersky.com/blog/ransomware-faq/13387/
[60] https://www.kaspersky.com/blog/ransomware-faq/13387/
https://books.google.com.pk/books?id=Nt5nDTYQ0okC
https://books.google.com.pk/books?id=Nt5nDTYQ0okC

Bibliography 81

[25] Asa Ben-Hur, David Horn, Hava T Siegelmann, and Vladimir Vapnik. Sup-

port vector clustering. Journal of machine learning research, 2(Dec):125–137,

2001.

[26] Stephan Dreiseitl and Lucila Ohno-Machado. Logistic regression and artifi-

cial neural network classification models: a methodology review. Journal of

biomedical informatics, 35(5-6):352–359, 2002.

[27] Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting

algorithm. -, 96:148–156, 1996.

[28] Jason Brownlee. A gentle introduction to the gradient boosting algorithm for

machine learning. Machine Learning Mastery,[En ĺınea][Citado el: 3 de Ju-

nio de 2018.] URL: https://machinelearningmastery. com/gentleintroduction-

gradient-boosting-algorithm-machine-learning, 2016.

[29] Gary William Flake and Steve Lawrence. Efficient svm regression training

with smo. In Machine Learning, volume 46, pages 271–290. Citeseer, 2000.

[30] V Veeralakshmi and D Ramyachitra. Ripple down rule learner (ridor) classifier

for iris dataset. Issues, 1(1):79–85, 2015.

[31] Wikipedia. Weka (machine learning). [34][34]https://en.wikipedia.

org/wiki/Weka_(machine_learning), 2019. [Online; accessed july-2019].

[32] APK Tool. APK Tool Documentstion. [32]https://ibotpeaches.github.

io/Apktool/documentation/, 2019. [Online; accessed july-2019].

[33] genymotion. genymotion release. [59]https://www.genymotion.com/

product-release-note/desktop/, 2019. [Online; accessed -April-2019].

[34] KnowBe4. Ransomware Knowledgebase. [28]https://www.knowbe4.com/

svpeng-mobile-ransomware, 2019. [Online; accessed june-2019].

[35] TechBeacon. Ransomware on the rise: The evolution of

a cyberattack. [29]https://techbeacon.com/security/

ransomware-rise-evolution-cyberattack, 2019. [Online; accessed

july-2019].

[34] [34] https://en.wikipedia.org/wiki/Weka_(machine_learning)
[34] [34] https://en.wikipedia.org/wiki/Weka_(machine_learning)
[32] https://ibotpeaches.github.io/Apktool/documentation/
[32] https://ibotpeaches.github.io/Apktool/documentation/
[59] https://www.genymotion.com/product-release-note/desktop/
[59] https://www.genymotion.com/product-release-note/desktop/
[28] https://www.knowbe4.com/svpeng-mobile-ransomware
[28] https://www.knowbe4.com/svpeng-mobile-ransomware
[29] https://techbeacon.com/security/ransomware-rise-evolution-cyberattack
[29] https://techbeacon.com/security/ransomware-rise-evolution-cyberattack

Bibliography 82

[36] Ibrar Yaqoob, Ejaz Ahmed, Muhammad Habib ur Rehman, Abdelmuttlib

Ibrahim Abdalla Ahmed, Mohammed Ali Al-garadi, Muhammad Imran, and

Mohsen Guizani. The rise of ransomware and emerging security challenges in

the internet of things. Computer Networks, 129:444–458, 2017.

[37] ESE Static. The 6 biggest ransomware attacks of the last 5 years.

[31]https://cdn3prodint.esetstatic.com/ESET/SG/whitepapers/

2016_Rise_of_Android_Ransomware.pdf, 2019. [Online; accessed july-

2019].

[38] Sana Aurangzeb. A machine learning based hybrid approach to classify and

detect windows ransomware, 2018.

[39] Wei Wang, Yuanyuan Li, Xing Wang, Jiqiang Liu, and Xiangliang Zhang.

Detecting android malicious apps and categorizing benign apps with ensemble

of classifiers. Future Generation Computer Systems, 78:987–994, 2018.

[40] Nikola Milosevic, Ali Dehghantanha, and Kim-Kwang Raymond Choo. Ma-

chine learning aided android malware classification. Computers & Electrical

Engineering, 61:266–274, 2017.

[41] AZMI AMINORDIN, FAIZAL MA, and ROBIAH YUSOF. Android malware

classification base on application category using static code analysis. Journal

of Theoretical and Applied Information Technology, 96(20):6854–6863, 2018.

[42] Drebin. The Drebin Dataset. [22]https://www.sec.cs.tu-bs.de/

~danarp/drebin/, 2019. [Online; accessed March-2019].

[43] Ransomprober. Share of Android OS of global smartphone shipments from

1st quarter 2011 to 2nd quarter 2018*. [21]http://csp.whu.edu.cn/

RansomProber/download.html/, 2019. [Online; accessed March-2019].

[44] Sanya Chaba, Rahul Kumar, Rohan Pant, and Mayank Dave. Malware

detection approach for android systems using system call logs. CoRR,

abs/1709.08805, 2017. URL http://arxiv.org/abs/1709.08805.

[31] https://cdn3prodint.esetstatic.com/ESET/SG/whitepapers/2016_Rise_of_Android_Ransomware.pdf
[31] https://cdn3prodint.esetstatic.com/ESET/SG/whitepapers/2016_Rise_of_Android_Ransomware.pdf
[22] https://www.sec.cs.tu-bs.de/~danarp/drebin/
[22] https://www.sec.cs.tu-bs.de/~danarp/drebin/
[21] http://csp.whu.edu.cn/RansomProber/download.html/
[21] http://csp.whu.edu.cn/RansomProber/download.html/
http://arxiv.org/abs/1709.08805

Bibliography 83

[45] Abdurrahman Pektaş and Tankut Acarman. Ensemble machine learning ap-

proach for android malware classification using hybrid features. In Marek

Kurzynski, Michal Wozniak, and Robert Burduk, editors, Proceedings of

the 10th International Conference on Computer Recognition Systems CORES

2017, pages 191–200, Cham, 2018. Springer International Publishing. ISBN

978-3-319-59162-9.

[46] Asaf Shabtai, Robert Moskovitch, Clint Feher, Shlomi Dolev, and Yuval

Elovici. Detecting unknown malicious code by applying classification tech-

niques on opcode patterns. Security Informatics, 1(1):1, 2012.

[47] Rahman Mukras, Nirmalie Wiratunga, Robert Lothian, Sutanu Chakraborti,

and David Harper. Information gain feature selection for ordinal text clas-

sification using probability re-distribution. In Proceedings of the Textlink

workshop at IJCAI, volume 7, page 16, 2007.

[48] Maŕıa Teresa Mart́ın-Valdivia, Manuel Carlos Dı́az-Galiano, Arturo Montejo-

Raez, and LA Ureña-López. Using information gain to improve multi-modal

information retrieval systems. Information Processing & Management, 44(3):

1146–1158, 2008.

[49] Yijuan Lu, Ira Cohen, Xiang Sean Zhou, and Qi Tian. Feature selection using

principal feature analysis. In Proceedings of the 15th ACM International

Conference on Multimedia, MM ’07, pages 301–304, New York, NY, USA,

2007. ACM. ISBN 978-1-59593-702-5. doi: 10.1145/1291233.1291297. URL

http://doi.acm.org/10.1145/1291233.1291297.

[50] Fengxi Song, Zhongwei Guo, and Dayong Mei. Feature selection using princi-

pal component analysis. In 2010 international conference on system science,

engineering design and manufacturing informatization, volume 1, pages 27–

30. IEEE, 2010.

[51] J.R. Quinlan. C4.5: Programs for Machine Learning. Ebrary online. Elsevier

Science, 2014. ISBN 9780080500584. URL https://books.google.com.pk/

books?id=b3ujBQAAQBAJ.

http://doi.acm.org/10.1145/1291233.1291297
https://books.google.com.pk/books?id=b3ujBQAAQBAJ
https://books.google.com.pk/books?id=b3ujBQAAQBAJ

Bibliography 84

[52] Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy esti-

mation and model selection. In Ijcai, volume 14, pages 1137–1145. Montreal,

Canada, 1995.

[53] K.S. Jones, P. Willett, and Jones. Readings in Information Retrieval. Morgan

Kaufmann series in multimedia information and systems. Morgan Kaufman,

1997. ISBN 9781558604544. URL https://books.google.com.pk/books?

id=Nt5nDTYQ0okC.

[54] Fairuz Amalina Narudin, Ali Feizollah, Nor Badrul Anuar, and Abdullah

Gani. Evaluation of machine learning classifiers for mobile malware detection.

Soft Computing, 20(1):343–357, 2016.

[55] M. Zubair Shafiq, S. Momina Tabish, and Muddassar Farooq. Are evo-

lutionary rule learning algorithms appropriate for malware detection? In

Proceedings of the 11th Annual Conference on Genetic and Evolutionary

Computation, GECCO ’09, pages 1915–1916, New York, NY, USA, 2009.

ACM. ISBN 978-1-60558-325-9. doi: 10.1145/1569901.1570233. URL

http://doi.acm.org/10.1145/1569901.1570233.

[56] Xuchun Li, Lei Wang, and Eric Sung. A study of adaboost with svm based

weak learners. In Proceedings. 2005 IEEE International Joint Conference on

Neural Networks, 2005., volume 1, pages 196–201. IEEE, 2005.

[57] Jerome H Friedman. Greedy function approximation: a gradient boosting

machine. Annals of statistics, 29(5):1189–1232, 2001.

[58] Olivier Chapelle and Vladimir Vapnik. Model selection for support vector

machines. In Advances in neural information processing systems, pages 230–

236, 2000.

https://books.google.com.pk/books?id=Nt5nDTYQ0okC
https://books.google.com.pk/books?id=Nt5nDTYQ0okC
http://doi.acm.org/10.1145/1569901.1570233

Appendix A

Feature Extraction Code For APK Files

import os , sys , re

from nl tk . corpus import stopwords

from bs4 import Beaut i fu lSoup

from nl tk . corpus import stopwords

from nl tk import token i z e

from xml .dom. minidom import pa r s eS t r i ng

from nl tk . stem import PorterStemmer

extens i on = ‘ ‘ . smal i ”

s o u r c e s L i s t = []

de f getUniqueWords (al lWords) :

uniqueWords = []

f o r i in allWords :

i f not i in uniqueWords :

uniqueWords . append (i)

r e turn uniqueWords

de f apk ex () :

with open (path+‘/ AndroidManifest . xml ’ , ‘ r ’) as f :

data = f . read ()

85

Appendix A 86

dom = par s eS t r i ng (data)

nodes = dom. getElementsByTagName (‘ uses−permiss ion ’)

f o r node in nodes :

y1=s t r (node . toxml ()) . f i n d (’ ’ ” ’ ’ ’)

y2=s t r (node . toxml ()) . f i n d (’ ’ ’ ” ’ ’ ’ , y1+1)

d red=s t r (node . toxml () [y1+1:y2]) . s p l i t (‘ ‘ . ”)

permis s ion = open (path + ‘ ‘/EX PERMISSION. txt ” , ‘ ‘ a ”)

i f l en (d red)>0:

permis s ion . wr i t e (d red [l en (d red)−1])

permis s ion . wr i t e (‘ ‘\n”)

data =[‘ abst ract ’ , ‘ boolean ’ , ‘ break ’ , ‘ byte ’ , ‘ case ’ , ‘ catch ’ ,

‘ char ’ , ‘ c l a s s ’ , ‘ const ’ , ‘ cont inue ’ , ‘ de f au l t ’ , ‘ do ’ , ‘ double ’ ,

‘ e l s e ’ , ‘ extends ’ , ‘ f i n a l ’ , ‘ f i n a l l y ’ , ‘ f l o a t ’ , ‘ f o r ’ , ‘ goto ’ ,

‘ i f ’ , ‘ implements ’ , ‘ import ’ , ‘ i n s t anceo f ’ , ‘ int ’ , ‘ i n t e r f a c e ’ ,

‘ long ’ , ‘ nat ive ’ , ‘ new ’ , ‘ nu l l ’ , ‘ package ’ , ‘ p r ivate ’ ,

‘ protected ’ , ‘ publ ic ’ , ‘ return ’ , ‘ short ’ , ‘ s t a t i c ’ , ‘ super ’ ,

‘ switch ’ , ‘ synchronized ’ , ‘ th i s ’ , ‘ throw ’ , ‘ throws ’ , ‘ t r an s i en t ’

, ‘ try ’ , ‘ void ’ , ‘ v o l a t i l e ’ , ‘ whi le ’ , ‘ a s s e r t ’ , ‘ enum ’ , ‘ s t r i c t f p ’]

de f r ev i ew to words (raw review) :

r e v i e w t e x t = Beaut i fu lSoup (raw review , ‘ ‘ lxml ”) . g e t t e x t ()

l e t t e r s o n l y = re . sub (‘ ‘ [ˆ a−zA−Z] ” , ‘ ‘ ” , r e v i e w t e x t)

words = l e t t e r s o n l y . lower () . s p l i t ()

s tops = s e t (stopwords . words (‘ ‘ e n g l i s h ”))

meaningful words = [w f o r w in words i f not w in s tops]

meaningful words =[w f o r w in meaningful words i f not w

in data]

#ps = PorterStemmer ()

#meaningful words = [ps . stem (x) f o r x in meaningful words]

#meaningful words=getUniqueWords (meaningful words)

re turn (‘ ‘ ” . j o i n (meaningful words))

Appendix A 87

de f f i l e R e a d e r (f i l e) :

f = open (f i l e , ‘ ‘ rb ”) . read ()

re turn f

de f L i s t e r (path) :

f o r fpath , d i r s , f i l e s in os . walk (path) :

f o r f i l e in f i l e s :

i f ex t ens i on in f i l e :

s o u r c e s L i s t . append (os . path . j o i n (fpath , f i l e))

c l a s s Extractor :

de f i n i t (s e l f , f i l e) :

s e l f . f i l e = f i l e

de f emailEX (s e l f) :

emai l s = open (path + ‘ ‘/EX EMAILS . txt ” , ‘ ‘ a ”)

data = f i l e R e a d e r (s e l f . f i l e)

data=data . decode (‘ ut f −8 ’)

ex ema i l s= l i s t (s e t (re . f i n d a l l (r ‘ [a−z0−9\.\−+]+@

[a−z0−9\.\−+] +\ . [a−z]+ ’ , data)))

f o r emai l in ex ema i l s :

i f l en (emai l) < 2 :

pass

e l s e :

emai l s . wr i t e (emai l . s t r i p ()+ ‘ ‘\n”)

de f urlsEX (s e l f) :

u r l s = open (path + ‘ ‘/EX URLS. txt ” , ‘ ‘ a ”)

data = f i l e R e a d e r (s e l f . f i l e)

data=data . decode (‘ ut f −8 ’)

Appendix A 88

e x u r l s = l i s t (s e t (re . f i n d a l l (r ‘ (? : https ? | f t p) :

\/\/[\w/\−?=%.]+\.[\w/\−?=%.]+’ , data)))

f o r u r l in e x u r l s :

i f l en (u r l) < 2 :

pass

e l s e :

u r l s . wr i t e (u r l . s t r i p ()+ ‘ ‘\n”)

de f ipsEX (s e l f) :

i p s = open (path + ‘ ‘/EX IPS . txt ” , ‘ ‘ a ”)

data = f i l e R e a d e r (s e l f . f i l e)

data=data . decode (‘ ut f −8 ’)

e x i p s = l i s t (s e t (re . f i n d a l l (r ‘ [0−9]+(? :\ . [0−9]+)

{3} ’ , data)))

f o r ip in e x i p s :

i p s . wr i t e (ip . s t r i p ()+ ‘ ‘\n”)

de f apk ex (s e l f) :

apkf = APK(path + ‘ ‘ . apk ”)

e x i p s=apkf . g e t p e r m i s s i o n s ()

f o r ip in e x i p s :

i p s . wr i t e (ip + ‘ ‘\n”)

de f t e x t e x (s e l f) :

i p s = open (path + ‘ ‘/EX TExt . txt ” , ‘ ‘ a ”)

data = f i l e R e a d e r (s e l f . f i l e)

data=data . decode (‘ ut f −8 ’)

Appendix A 89

e x i p s = rev i ew to words (data)

e x i p s=token i z e . s e n t t o k e n i z e (e x i p s)

#pr in t (e x i p s)

f o r ip in e x i p s :

i p s . wr i t e (ip . s t r i p ()+ ‘ ‘\n”)

#i p s . wr i t e (e x i p s)

de f i n t e r e s f i l e s (s e l f) :

i n t f i l e s = open (path + ‘ ‘/EX DATA. txt ” , ‘ ‘ a ”)

words = [‘ ba se ur l ’ , ‘ ‘ f t p ” , ‘ ‘ db ” , ‘ ‘ pass ” , ‘ ‘ u s e r p a s s ” ,

‘ ‘ user name ” , ‘ ‘ smtp ” , ‘ ‘ passwd ” , ‘ ‘ mysql : / / ” , ‘ ‘ f t p : / / ”]

data = f i l e R e a d e r (s e l f . f i l e)

data=data . decode (‘ ut f −8 ’)

f o r word in words :

i f word . upper () in data or word . lower () in data :

i n t f i l e s . wr i t e (‘ ‘{} \ t : {}\n ” . format (word ,

s e l f . f i l e))

import g lob

import os

i f name == ‘ main ’ :

f o r path in glob . g lob (‘ ∗ . apk ’) :

t ry :

path=path [0 : l en (path)−4]

p r i n t (path)

x= ‘ ‘ apktoo l d −f ”+path + ‘ ‘ . apk”

os . system (x)

L i s t e r (path)

p r i n t (‘ ‘ Working on Extract ing permis s ion ”)

apk ex ()

p r i n t (‘ ‘ Working on Network Features ”)

f o r s l in s o u r c e s L i s t :

Appendix A 90

EX = Extractor (s l)

EX. urlsEX ()

EX. emailEX ()

EX. ipsEX ()

EX. i n t e r e s f i l e s ()

except Exception as e :

p r i n t (‘ ‘ Error in apk : ” , e)

p r i n t (‘ ‘ F in i shed ”)

Appendix B

Standard Configuration of AdaBoost in WEKA 3.8.3

Property Configuration

base estimator None

learning rate 1

n estimators 50

random state None

Standard Configuration of Decision Tree in WEKA 3.8.3

Property Configuration

max features 0

max depth 0

min samples leaf 1

min samples split 2

min weight fraction leaf 0

presort FALSE

Standard Configuration of Gradient Boosting in WEKA 3.8.3

Property Configuration

learning rate 0.1

loss deviance

max depth 3

91

Appendix B 92

max features None

max leaf nodes None

min samples leaf 1

min weight fraction leaf 0

n estimators 100

presort auto

subsample 1

tol 0.0001

validation fraction 0.1

warm start FALSE

Standard Configuration of Logistic Regression in WEKA 3.8.3

Property Configuration

intercept scaling 1

max iter 100

multi class multinomial

penalty 12

solver Ibfgs

tol 0.0001

warm start FALSE

Standard Configuration of Random Forest in WEKA 3.8.3

Property Configuration

bootstrap TRUE

max depth None

max features auto

max leaf nodes None

min samples leaf 1

min samples split 2

Appendix B 93

n estimators warn

warm start FALSE

Standard Configuration of Naive Bayes in WEKA 3.8.3

Property Configuration

Priors None

Var smoothing 1.00E-09

Standard Configuration of Support Vector Classifier in WEKA 3.8.3

Property Configuration

C 1

cache size 200

decision function shape one-vs-rest

degree 3

kernel Redial basis function

max iter -1

probability FALSE

tol 0.001

verbose FALSE

Standard Configuration of Voting Classifier in WEKA 3.8.3

Property Configuration

flatten transform TRUE

n jobs None

voting Hard

weights None

	Author's Declaration
	Plagiarism Undertaking
	List of Publications
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Purpose
	1.2 Problem Statement
	1.3 Research Questions
	1.4 Proposed Solution
	1.5 Significance of The Solution
	1.6 Tools & Techniques

	2 Background and Literature Review
	2.1 Android Ransomware
	2.1.1 Crypto-Ransomware & Locker-Ransomware
	2.1.2 Families of Android Ransomware
	2.1.3 Anatomy of Android Ransomware Attack

	2.2 Literature Review
	2.2.1 Static Analysis
	2.2.2 Dynamic Analysis
	2.2.3 Hybrid Analysis
	2.2.4 Critical Analysis

	3 Research Methodology
	3.1 Proposed Hybrid Distinct Ensemble Analysis
	3.1.1 Training of Hybrid Distinct Ensembles
	3.1.2 Data Collection
	3.1.3 Extraction of Static Features
	3.1.4 Extraction of Dynamic Features
	3.1.5 Static Feature Vector
	3.1.6 Dynamic Feature Vector
	3.1.7 Feature Selection using InfoGain
	3.1.8 Feature Selection using PCA

	3.2 Classifiers used for Training
	3.2.1 Naive Bayes
	3.2.2 Decision Tree (J48)
	3.2.3 Random Tree
	3.2.4 Random Forest
	3.2.5 Support Vector Classifier
	3.2.6 Logistic Regression
	3.2.7 Adaptive Boosting (AdaBoosting)
	3.2.8 Gradient Boosting
	3.2.9 Support Vector Machine with Sequential Minimal Optimization
	3.2.10 JRip

	3.3 Evaluation Measurement

	4 Results and Discussion
	4.1 Introduction
	4.2 Experimental Setup
	4.3 Dataset
	4.4 Feature Selection
	4.5 Classification
	4.6 Classification Results with Feature Selection
	4.6.1 Classification Results of Top Ranked Features from InfoGain
	4.6.2 Classification Results of Top Ranked Features from PCA

	4.7 Classification Results without Feature Selection
	4.8 Test Results of Hybrid Distinct Ensemble Analysis Approach Against Fabricated Inputs
	4.8.1 Results Against 1-bit Fabricated Input
	4.8.2 Results Against 10-bit Fabricated Input
	4.8.3 Results Against 20-bit Fabricated Input

	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Work

	Bibliography
	Appendix A
	Appendix B

